
CA-IDMS®
Dictionary Loader User Guide

15.0

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

THIS DOCUMENTATION MAY NOT BE COPIED, TRANSFERRED, REPRODUCED, DISCLOSED, OR
DUPLICATED, IN WHOLE OR IN PART, WITHOUT THE PRIOR WRITTEN CONSENT OF CA. THIS
DOCUMENTATION IS PROPRIETARY INFORMATION OF CA AND PROTECTED BY THE COPYRIGHT
LAWS OF THE UNITED STATES AND INTERNATIONAL TREATIES.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS
IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGE-
MENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD PARTY FOR ANY
LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,
INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

THE USE OF ANY PRODUCT REFERENCED IN THIS DOCUMENTATION AND THIS DOCUMENTA-
TION IS GOVERNED BY THE END USER'S APPLICABLE LICENSE AGREEMENT.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227.7013(c)(1)(ii) or applicable successor provisions.

First Edition, December 2000

 2000 Computer Associates International, Inc.
One Computer Associates Plaza, Islandia, NY 11749
All rights reserved.

All trademarks, trade names, service marks, or logos referenced herein belong to their respective companies.

 Contents

How to Use This Manual . v

Chapter 1. Introduction . 1-1
1.1 About the Dictionary Loader . 1-3
1.2 System Overview . 1-4
1.3 Dictionary Loader Capabilities . 1-7
1.4 Dictionary Loader Reports . 1-9

Chapter 2. Program Processor . 2-1
2.1 About the Program Processor . 2-3
2.2 Input Requirements . 2-4
2.3 Output . 2-6

2.3.1 Management Summary Report . 2-6
2.3.2 Diagnostic Report . 2-7
2.3.3 File and Record Layouts Report . 2-10
2.3.4 DATA DIVISION Cross-Reference Report 2-13

2.4 Parameter Statement . 2-15
2.5 Executing the Program Processor . 2-18

Chapter 3. Cross Reference Processor . 3-1
3.1 About the Cross Reference Processor . 3-3
3.2 Overview . 3-4
3.3 Developing a File of Control Statements . 3-7
3.4 Filling in Worksheets . 3-10
3.5 Parameter Statement . 3-13
3.6 Title Statement . 3-17
3.7 Selection Statement . 3-18
3.8 Sample Control File . 3-19
3.9 System Data Cross-Reference Report . 3-20
3.10 Dictionary of Data Names Report . 3-23
3.11 Executing the Cross Reference Processor 3-24

Chapter 4. DDDL Generator . 4-1
4.1 About the DDDL Generator . 4-3
4.2 Overview . 4-4
4.3 Developing a File of Control Statements . 4-7
4.4 Parameter Statement . 4-9
4.5 VERSION Statement . 4-11
4.6 Grouping Statement . 4-12
4.7 Using the Grouping Statement . 4-14
4.8 Editing Generated DDDL Statements . 4-17
4.9 Executing the DDDL Compiler . 4-20

Appendix A. Sample COBOL Input and DDDL Output A-1
A.1 About this Appendix . A-3

Appendix B. Runtime Error Messages . B-1

Contents iii

B.1 About Runtime Error Messages . B-3
B.2 Runtime Messages Issued by the Program Processor B-4
B.3 Runtime Message Issued by the Cross Reference Processor B-6
B.4 Runtime Messages Issued by the DDDL Generator B-8

Index . X-1

iv CA-IDMS Dictionary Loader

How to Use This Manual

How to Use This Manual v

What this Manual Contains

This manual provides the conceptual and operational information necessary to use the
Dictionary Loader including:

■ Syntax and job control language

■ Considerations relating to using the Dictionary Loader effectively

vi CA-IDMS Dictionary Loader

How this Manual is Organized

This manual is divided into four chapters and two appendices:

■ Introduction (Chapter 1)

An overview of the system architecture, system operation, and system capabilities.

■ Program Processor (Chapter 2)

Details on the input, output, and operation of the Program Processor. This section
includes syntax, sample reports, and execution JCL for operating the Program
Processor under OS/390 and VSE/ESA.

■ Cross Reference Processor (Chapter 3)

Details on the input, output, and operation of the Cross Reference Processor. This
section includes syntax, sample reports, and execution JCL for operating the Cross
Reference Processor under OS/390 and VSE/ESA.

■ DDDL Generator (Chapter 4) Details on the input, output, and operation of the
DDDL Generator. This section includes syntax, sample generated DDDL state-
ments, a summary of the DDDL clauses generated, and execution JCL for oper-
ating the DDDL Generator under OS/390 and VSE/ESA.

■ Sample COBOL input and DDDL Output (Appendix A)

Listing of three related COBOL programs and a listing of the DDDL statements
generated by processing these programs.

■ Runtime Error Messages (Appendix B)

Details on run-time messages issued by the Dictionary Loader.

How to Use This Manual vii

 Related Manuals

The following documents provide additional information relating to the information
contained in this manual:

■ IDD DDDL Reference

■ CA-IDMS Dictionary Structure Reference

viii CA-IDMS Dictionary Loader

 Chapter 1. Introduction

1.1 About the Dictionary Loader . 1-3
1.2 System Overview . 1-4
1.3 Dictionary Loader Capabilities . 1-7
1.4 Dictionary Loader Reports . 1-9

Chapter 1. Introduction 1-1

1-2 CA-IDMS Dictionary Loader

1.1 About the Dictionary Loader

1.1 About the Dictionary Loader

Dictionary Loader populates the dictionary: The Dictionary Loader is a syntax
converter used in conjunction with the Integrated Data Dictionary (IDD) to simplify
the task of populating the dictionary with information contained in COBOL source
programs. The Dictionary Loader processes a system of programs (that is, programs
that process common files and records) individually and then collectively. This proc-
essing yields a collection of useful reports and the Data Dictionary Definition Lan-
guage (DDDL) source statements (that is, ADD PROGRAM, ADD RECORD, and
ADD FILE) needed to populate the dictionary with information about the programs.

What follows: To acquaint you with the Dictionary Loader, this chapter presents a
system overview, a list of system capabilities, and a description of the reports the Dic-
tionary Loader generates. Sections 2, 3, and 4 discuss the input, output, and operation
of each of the three Dictionary Loader components separately.

Chapter 1. Introduction 1-3

1.2 System Overview

 1.2 System Overview

Dictionary Loader components: The Dictionary Loader consists of three compo-
nents:

Program Processor: The Program Processor analyzes a single COBOL program and
produces an intermediate file (data usage file) containing information about data usage
within the program (for example, an element name and the source lines that refer to
the name). A collection of data usage files (that is, one file for each COBOL program
in a system of programs) is input to the DDDL Generator and optionally to the Cross
Reference Processor.

Cross Reference Processor: The optional Cross Reference Processor analyzes a
collection of data usage files and produces reports that aid in developing the file of
control statements for running the DDDL Generator. Generally, the Cross Reference
Processor is executed for a system of programs (for example, several programs that
process the same file).

DDDL Generator: The DDDL Generator reads data usage files produced by the
Program Processor and generates the appropriate DDDL source statements for subse-
quent input to the DDDL compiler.

Illustration of the components: The figure below illustrates how the three Dic-
tionary Loader components are related:

Function of the Program Processor: The Program Processor (PRANCOB) ana-
lyzes a single COBOL program. Output from this program is a set of reports and a
data usage file. The reports and the file contain information about the way that the
program uses data. The data usage file is used as input to the Cross Reference

1-4 CA-IDMS Dictionary Loader

1.2 System Overview

Processor and the DDDL Generator. Note that the Program Processor is executed sep-
arately for each COBOL program in the system of programs to be processed. The
functioning of the Program Processor is illustrated in the figure below:

Function of the Cross Reference Processor: The Cross Reference Processor
(PRANXREF) analyzes a collection of data usage files to track all references to data
elements throughout a system of programs. Output from this component are reports
that provide extensive cross-reference information (for example, data items and the
source lines that refer to each item) about the system of programs being analyzed.
The reports also aid in developing the control statements for running the DDDL Gen-
erator. You can bypass the Cross Reference Processor in you want to. The figure
below illustrates the functioning of the Cross Reference Processor:

Function of the DDDL Generator: The DDDL Generator (PRANIDDG) reads a
collection of data usage files and generates the appropriate DDDL source statements
for input to the IDD DDDL compiler. Optional control statements can be used to
specify a VERSION clause to be added to generated statements and to identify synon-
ymous and nonunique names (that is, multiple names used to refer to the same file or
record or single names used to refer to two or more different files or records). This
module generates a file containing all DDDL ADD PROGRAM, ADD FILE, and
ADD RECORD statements associated with the system of programs processed and
produces a listing of a all generated statements. The functioning of the DDDL Gener-
ator is illustrated in the figure below:

Chapter 1. Introduction 1-5

1.2 System Overview

1-6 CA-IDMS Dictionary Loader

1.3 Dictionary Loader Capabilities

1.3 Dictionary Loader Capabilities

The Dictionary Loader has the capabilities described below.

Generates DDDL statements: The Dictionary Loader can process a system of up
to 99 COBOL programs to generate a file of DDDL statements that describe the pro-
grams and the files, records, and elements that the programs use. This file can be
submitted to the DDDL compiler to populate the data dictionary.

Generates VERSION clauses: The Dictionary Loader adds VERSION clauses to
all generated statements. If directed by a control statement, the DDDL Generator
includes a user-specified VERSION clause in each generated statement; otherwise, the
DDDL Generator includes a VERSION 01 clause in each statement.

Processes synonyms: The Dictionary Loader can identify synonyms within gen-
erated ADD statements. When a single file or record is referred to by many different
names throughout the system of programs, the DDDL Generator can be directed to
generate a SYNONYM clause within each ADD statement to identify all other names
used to refer to the file or record.

Processes nonunique names: The Dictionary Loader can differentiate between
multiple uses of the same name. When multiple files or records are referred to by a
single name, the DDDL Generator can be directed to generate an ADD statement for
each unique file or record, assigning each occurrence of the name of a separate version
number (NEXT HIGHEST/NEXT LOWEST) or assigning all occurrences the same
version.

Using NEXT HIGHEST/LOWEST: If NEXT HIGHEST/NEXT LOWEST is used in
generating the DDDL statements with the DDDL Generator, the DDDL compiler will
add all of the entities to the data dictionary, using the same name and differentiating
one from another by the version number.

Using explicit version numbers: If all entities are assigned an explicit version
number (that is, the same version number) during DDDL Generator processing, the
DDDL compiler will process the statements in one of two ways depending on the
setting of the DDDL compiler option DEFAULT IS ON/OFF:

DEFAULT IS ON The DDDL compiler will process the first ADD statement
containing the nonunique entity-occurrence name and change
subsequent ADD statements that use the name to MODIFY
statements.

DEFAULT IS OFF The DDDL compiler will process only the first ADD state-
ment that contains the nonunique entity-occurrence name and
will flag as erroneous all subsequent ADD statements that use
the name.

Chapter 1. Introduction 1-7

1.3 Dictionary Loader Capabilities

Editing the generated statements: You can edit the generated DDDL statements to
eliminate unwanted ADDs, to establish different version numbers, or to merge several
ADD statements that describe the same record or file into a single ADD statement.

1-8 CA-IDMS Dictionary Loader

1.4 Dictionary Loader Reports

1.4 Dictionary Loader Reports

Program Processor reports: The Program Processor produces four reports that
are useful in analyzing the program, as follows:

Cross-Reference Processor reports: The Cross-Reference Processor produces
two reports that are useful in analyzing a collection of related programs as follows:

Management Summary
Report

Lists the number of source lines in each division of the
program, the number of diagnostic messages issued, and
file usage information. The report aids in a quick
assessment of the program's complexity, conformance to
standard and file usage.

Diagnostic Report Lists all source program lines found to contain a poten-
tial error condition. The report aids in identifying
COBOL syntax errors, non-conformance to ANS stand-
ards, and logical errors that could not be detected by a
COBOL compiler.

File and Record Layouts
Report

Lists information about the attributes of each file and
detail information about the data items within each
record. The report aids in finding information about
files and data items without having to refer to the source
listing.

DATA DIVISION Cross-
Reference Report

Lists all data items used in the program and all refer-
ences to the data items made in the PROCEDURE
DIVISION of the program. The report allows compre-
hensive tracking of the use of data items within the
program.

System Data Cross-
Reference Report

Lists data items and references to the items for a system
of programs. The report allows comprehensive tracking
of the use of data items within the entire system of pro-
grams.

Dictionary of Data Names Lists alphabetically, all data element and record names
used in a system of programs together with extensive
information about each item listed. This report aids in
tracking the use of data names.

Chapter 1. Introduction 1-9

1-10 CA-IDMS Dictionary Loader

 Chapter 2. Program Processor

2.1 About the Program Processor . 2-3
2.2 Input Requirements . 2-4
2.3 Output . 2-6

2.3.1 Management Summary Report . 2-6
2.3.2 Diagnostic Report . 2-7
2.3.3 File and Record Layouts Report . 2-10
2.3.4 DATA DIVISION Cross-Reference Report 2-13

2.4 Parameter Statement . 2-15
2.5 Executing the Program Processor . 2-18

Chapter 2. Program Processor 2-1

2-2 CA-IDMS Dictionary Loader

2.1 About the Program Processor

2.1 About the Program Processor

Description: The Program Processor processes a single COBOL source program
and produces a data usage file and reports. This component is a full COBOL parser; it
includes functional phases for reading, scanning, parsing, analyzing, sorting, and
reporting on a COBOL source program. The Program Processor produces the fol-
lowing reports:

■ The Management Summary Report

■ The Diagnostic Report

■ The File and Records Layout Report

■ The DATA DIVISION Cross-Reference Report.

Data usage file: The data usage file produced is the input required for the Cross
Reference Processor and the DDDL Generator. The Program Processor must be exe-
cuted once for each program in the system of programs being processed.

What follows: This chapter describes the input requirements and the reports associ-
ated with the Program Processor and provides instructions for executing this compo-
nent under OS/390 and VSE/ESA.

Chapter 2. Program Processor 2-3

2.2 Input Requirements

 2.2 Input Requirements

COBOL source program requirements: One execution of the Program
Processor requires as input a single, complete COBOL source program. The program
must meet the following requirements:

■ The program must be in a form suitable for COBOL compilation. Programs con-
taining COBOL COPY statements are expanded automatically. The library
member being copied must contain the 01 level description.

■ If the program contains embedded CA-IDMS/DB navigational DML commands, it
must be run through the DMLC processor before being input to the Program
Processor. The DMLC processor changes DML commands to COBOL comments
and generates CALLS, as appropriate, for requesting database services. The file
output from the DMLC processor can be input to the Program Processor.

■ If the program resides in a library in compressed format, it must be run through
the appropriate librarian utility to expand it into standard 80-character format
before being input to the Program Processor. Output from the librarian utility can
be input to the Program Processor.

VSE/ESA considerations: Note that VSE/ESA users can copy source code input
to the Program Processor from a source statement library by using the =COPY facility.
To use this facility, specify the member containing the source code in the following
syntax:

��── =COPY IDMS ─┬──────────────────────┬─ member-name ───────────────────────��

├─ sublibrary-name. ─┬─┘

└─ A. ← ─────────────┘

If member-name is not in the A. sublibrary, specify the sublibrary (usually C.) name.
Note that if a private source statement library is used to store member-name, the
DLBL file type must be specified as DA at run time.

An example of the use of this statement is shown below:

=COPY IDMS C.PRANDEM1

Other input form: The Program Processor accepts one other form of input: the
parameter statement. This statement specifies override processing options for exe-
cuting the Program Processor. The following table is a summary of the options avail-
able with this statement. For syntax and rules, refer to 2.4, “Parameter Statement” on
page 2-15 later in this chapter.

Note: For OS/390 clients, parameters can be specified more conventionally in the
execution JCL by using the PARM clause of the EXEC statement.

Runtime Options for the Program Processor: The Program Processor operates
with the default options listed in effect unless override options are specified.

2-4 CA-IDMS Dictionary Loader

2.2 Input Requirements

Parameter Default Option Override Option

SYSREF/NOSYSREF SYSREF — The data usage
file is to be produced

NOSYSREF — The data usage file is not
to be produced

SOURCE/NOSOURCE NOSOURCE — The COBOL
source program is not to be
listed

SOURCE — The COBOL source
program is to be listed

SUMM/NOSUMM SUMM — The Management
Summary Report is to be
printed

NOSUMM — The Management Summary
Report is not to be printed

DMAP/NODMAP DMAP — The File and
Record Layouts Report is to
be printed

NODMAP — The File and Records
Layout Report is not to be printed

DXREF/NODXREF DXREF — The DATA DIVI-
SION Cross-Reference Report
is to be printed

NODXREF — The DATA DIVISION
Cross- Reference Report is not to be
printed

DIAG/NODIAG DIAG — The Diagnostic
Report is to be printed

NODIAG — The Diagnostic Report is not
to be printed

ANS/ANS68/ANS74/NOANS NOANS — ANS diagnostics
are not to be included in the
Diagnostic Report

ANS — All diagnostic messages are to be
included in the Diagnostic Report

ANS68 — Only ANS 1968 diagnostic
messages are to be included in the Diag-
nostic Report

ANS74 — Only ANS 1974 diagnostic
messages are to be included in the Diag-
nostic Report

FLO/NOFLO FLO — FLO diagnostic mes-
sages are to be included in
the Diagnostic Report

NOFLO — FLO diagnostic messages are
not to be included in the Diagnostic
Report

NUM/NONUM NUM — The line numbers
present in the source program
are to be used for referencing

NONUM — Line numbers are to be
assigned sequentially to all lines in the
source program for referencing

Chapter 2. Program Processor 2-5

2.3 Output

 2.3 Output

Types of output: The Program Processor automatically produces the following
output:

■ Data Usage File

■ Management Summary Report

 ■ Diagnostic Report

■ File and Record Layouts Report

■ DATA DIVISION Cross-Reference Report

Overrides: Note that override processing options are available to suppress the output
of the data usage file and any of the reports, and to request the inclusion of a source
program listing (see 2.4, “Parameter Statement” on page 2-15 below).

Title page: Output from the Program Processor begins with a title page. The title
page identifies the program and the date of the run, and supplies a table of contents
listing all reports produced for the run. If a program listing has been requested, it
appears after the Management Summary Report. Program Processor reports are dis-
cussed separately below.

2.3.1 Management Summary Report

Source program information: The Management Summary Report provides the
following information about the source program:

■ The number of source lines in each division of the program

■ The number of diagnostic messages issued for each type of error

■ File usage information for each file associated with the program

Sample report: This report aids in an overall assessment of the source program's
complexity, conformance to standards, and file usage. A sample Management
Summary Report appears below:

2-6 CA-IDMS Dictionary Loader

2.3 Output

PRANDEM2 MANAGEMENT SUMMARY DICTIONARY LOADER 28 JAN 99 1425 PAGE 1

129 TOTAL SOURCE LINES

 8 LINES IN IDENTIFICATION DIVISION

 6 LINES IN ENVIRONMENT DIVISION

62 LINES IN DATA DIVISION

53 LINES IN PROCEDURE DIVISION

 5 (ANS) VIOLATIONS OF BOTH ANS-68 AND ANS-74

 9 (A68) VIOLATIONS OF ANS-68 ONLY

 2 (A74) VIOLATIONS OF ANS-74 ONLY

 9 ($$$) COBOL SOURCE ERRORS

 9 (FLO) FLOW ANALYSIS

 OPENED FOR: RECORD BLOCK

FILE NAME DEVICE IN OU IO EX LENGTH SIZE

 CUSTOMER-FILE UT-2499-S-CUSTIN X 194 UNBLOCKED

 RPTFILE UT-S-SYSLST X 133 UNBLOCKED

 2.3.2 Diagnostic Report

Lists incorrect source: The Diagnostic Report lists all source program lines found
to contain a potential error condition. Each line listed is followed by a diagnostic
message. The message identifies the problem portion of the COBOL statement with
an asterisk (*), indicates the type of condition detected with a keyword indicator, and
briefly describes the condition.

 Sample report

PRANDEM2 DIAGNOSTIC LISTING DICTIONARY LOADER 28 JAN 99 1425 PAGE 2

 GEN-LN SOURCE CARD REMARKS

139999 MOVE SPACE TOO DETAIL-REC.

@ ($$$) SYNTAX ERROR

Diagnostic Report messages: The Diagnostic Report lists three types of diag-
nostic messages:

Syntax ($$$): One of the following three messages appears following the $$$ indi-
cator:

1. 'Character-string' NOT ALLOWED

The character string reported is a valid COBOL keyword or expression, but it
cannot be used where it appears.

2. PROCEDURE NOT FOUND

The operand of the PERFORM statement is undefined.

 3. SYNTAX ERROR

The word or construction does not conform to COBOL syntax rules.

Chapter 2. Program Processor 2-7

2.3 Output

ANS, ANS68, ANS74: The appropriate form of the following diagnostic message
appears following the ANS, ANS68, or ANS74 indicators:

ANS/ANS-68/ANS-74 DOES NOT ALLOW 'keyword'

The keyword reported violates ANS 1968 standards for COBOL (ANS-68), 1974
standards (ANS-74), or both 1968 and 1974 standards (ANS).

Logical flow (FLO): One of the following messages appears following the FLO indi-
cator:

 1.

ALTER TO procedure-name IN PROCEDURE

PERFORM procedure-name-1 THRU procedure-name-n

The ALTER statement causes the altered paragraph to transfer into the THRU
range of a PERFORM procedure that does not contain the altered paragraph.

 2.

ALTER TO procedure-name OUT OF PROCEDURE

PERFORM procedure-name-1 THRU procedure-name-n

The ALTER statement sets the altered paragraph so that it will transfer out of the
THRU range of the PERFORM procedure in which the altered paragraph resides.

 3.

ALTERED PARAGRAPH NEVER REACHED

This paragraph is never reached when the program is executed. The paragraph is
altered however, by a statement that can be reached.

 4.

END OF PROC DIV REACHED

Program flow can fall through the end of the last paragraph of the PROCEDURE
DIVISION. Program flow, should be ended by a STOP RUN statement.

 5.

GO TO procedure-name IN PROCEDURE

PERFORM procedure-name-1 THRU procedure-name-n

The GO TO statement resides outside the THRU range of the PERFORM proce-
dure and transfers control to a paragraph inside the PERFORM procedure.

 6.

GO TO procedure-name OUT OF PROCEDURE

PERFORM procedure-name-1 THRU procedure-name-n

The GO TO statement transfers control out of the THRU range of the PERFORM
in which the GO TO resides.

2-8 CA-IDMS Dictionary Loader

2.3 Output

 7.

PARAGRAPH NEVER REACHED

Program flow cannot reach this paragraph during execution of the program

 8.

PERFORM EXIT BEFORE ENTRY

A statement of the form PERFORM procedure-name-1 THRU procedure-name-n
has been found where the procedure-name-n precedes procedure-name-1 in the
program.

 9.

PERFORM RANGE OVERLAPS

PERFORM procedure-name-1 THRU procedure-name-n

The range of this PERFORM statement overlaps the range of PERFORM
procedure-name-1 THRU procedure-name-n. Either the two names have a
common entry or exit, or one range is not completely nested in the other.

10.

PROCEDURE EXIT NEVER REACHED

The procedure name in the statement flagged can never be reached at execution
time. The name is referred to, however, by a statement of the form PERFORM
procedure-name-1 THRU procedure-name-n. This message is also issued for a
paragraph referred to by an ALTER statement of the form ALTER
procedure-name-1 to procedure-name-2, where either procedure-name-1 or
procedure-name-2 cannot be reached.

11.

REACHED FROM LAST PARA/SECT AND

PERFORM procedure name-1 THRU procedure-name-2

Program flow can reach this statement in either of the following ways:

■ From the end of the preceding paragraph or as the first paragraph of a per-
formed chapter.

■ From a PERFORM statement that refers to this paragraph as the entry point
of the performed procedure.

12.

SENTENCE NEVER REACHED

This sentence will never be reached during program execution.

13.

STATEMENT NEVER REACHED

This statement (within a sentence) will never be reached during program exe-
cution.

Types of problems flagged: Note that with the exception of two of the three
syntax messages, Diagnostic Report messages identify problems that normal COBOL
compilation might not flag. These problems fall into two categories as follows:

Chapter 2. Program Processor 2-9

2.3 Output

Syntax errors in compiled programs: Note that messages identifying syntax
errors may be issued for programs that have compiled successfully. Such error mes-
sages usually identify minor differences in the syntax requirements enforced by the
user's compiler and the Program Processor. For example, some compilers do not flag
as erroneous COBOL statements that begin in column 8 instead of 12. The Program
Processor flags such statements. If these syntax errors are not important to the user,
they can be ignored.

Compatibility ANS messages flag areas of potential compatibility in success-
fully compiled programs that might be run through another
compiler.

Logical flow FLO messages flag potential flaws in logic that could not be
detected by the COBOL compiler. For example, FLO diag-
nostics can aid in identifying statements that can never be
reached during execution.

2.3.3 File and Record Layouts Report

Describe file and record layouts: The File and Record Layouts Report is a six
part report that provides information about the attributes of each file and specific
details about the data items within each record:

■ The first five parts of the report describe the five sections contained within the
DATA DIVISION of a COBOL source program (that is, the FILE,
WORKING-STORAGE, LINKAGE, COMMUNICATION, and REPORT
sections).

■ The sixth section of the report lists source statement references to all ACCEPT,
DISPLAY, STOP, and CALL statements used the PROCEDURE DIVISION of
the source program. This report allows quick access to information about files
and data items without having to refer to the source listing.

Sample report: The figure below shows the first page of a sample File and Record
Layouts Report.

2-10 CA-IDMS Dictionary Loader

2.3 Output

PRANDEM2 FILE AND RECORD LAYOUTS (FILE SECTION) DICTIONARY LOADER 28 JAN 99 1425 PAGE 1

 FILE NAME: CUSTOMER-FILE

 DEVICE NAME: UT-2499-S-CUSTIN

 LABEL: OMITTED

 BLOCK SIZE: UNBLOCKED

 RECORD SIZE: 194 CHARACTERS

 RECORD FORMAT: FIXED

979999 OPEN INPUT CUSTOMER-FILE

984999 READ CUSTOMER-FILE RECORD

125999 CLOSE CUSTOMER-FILE

LV-DAT NAME SRC LN POS SIZE USAGE OCC VALUE

 FD CUSTOMER-FILE 937999

 91 CUSTOMER 943999 1 (194) GROUP

93 CUST-NUM 944999 1 19 DISP

 93 CUST-NAME 945999 11 29 DISP

 93 CUST-ADDRESS 946999 31 (49) GROUP

 95 CUST-ADDR1 947999 31 29 DISP

 95 CUST-ADDR2 948999 51 (29) GROUP

 96 CUST-CITY 949999 51 15 DISP

 96 CUST-ZIP-CODE 959999 66 5 DISP

 93 CUST-CREDIT 951999 71 3 DISP

 88 CUST-CREDIT-EXEC 952999 'AAA'

 88 CUST-GOOD 953999 ' '

 88 CUST-POOR 954999 'XXX'

 93 FILLER 955999 74 31 DISP

 Field descriptions

FILE NAME
The file name.

DEVICE NAME
The device name assigned to the file.

LABEL
Information about LABEL records. The report displays the keywords OMITTED
or STANDARD, or the name of a user LABEL record.

BLOCK SIZE
The size of the physical block, if blocked.

RECORD SIZE
The size of the file's data records.

RECORD FORMAT
The RECORDING MODE of the record. The report displays FIXED, VARI-
ABLE, UNDEFINED, or SPANNED.

LV
The level number of the data item. For items for which level number is not appli-
cable, codes provide information about the item:

■ FD — File description

■ SD — Sort description

■ DC — Communication description

■ RD — Report description

Chapter 2. Program Processor 2-11

2.3 Output

No level number is provided for definitions of index names used by the
INDEXED BY clause.

DATA NAME
Name of the data item. DATA NAME can be a file name, record name, or an
element name.

SRC LN
The line number of the source line where the data item is defined.

POS
Starting position associated with the data item.

SIZE
The size of the data item. Parentheses enclose a size reported for a group item.

USAGE
The form in which the data item is to be stored as the result of the source pro-
gram's specifications:

■ GROUP — The data item contains subordinate items.

■ DISP — The data item is stored in character form.

■ DISP-NM — The data item is stored one digit per character position. The
PIC contains only S, 9, and V.

■ NM-EDIT — The data item is a numeric item stored in character format.
The PIC contains some or all of the editing characters +, -, z, $, comma, B,
CR, DB, ., or 0.

The following report writing specifications can also appear in this column:

■ RH — Report heading

■ RF — Report footing

■ PH — Page heading

■ PF — Page footing

■ CH — Control heading

■ CF — Control footing

■ DE — Detail

OCC
The number of occurrences of the data item if the definition of the item uses an
OCCURS clause.

VALUE
The value assigned to the data item if the definition of the item uses a VALUE
clause.

2-12 CA-IDMS Dictionary Loader

2.3 Output

2.3.4 DATA DIVISION Cross-Reference Report

Lists all program fields: The DATA DIVISION Cross-Reference Report provides
an alphabetic listing of each data item included in the program and all references to
the item in the PROCEDURE DIVISION of the program. The data item name is
listed together with its attributes and the number of each source line that refers to the
data name. This report allows comprehensive tracking of the use of data items.

 Sample report

PRANDEM2 DATA DIVISION CROSS REFERENCE DICTIONARY LOADER 28 JAN 99 1425 PAGE 6

LV DATA-NAME SRC-LN SIZE OCC QUALIFICATION REF-LN STATEMENT REF-LINE-NBRS

 93 CUST-ADDRESS 946999 49 (CUSTOMER-FILE)

 CUSTOMER

95 CUST-ADDR1 947999 29 (CUSTOMER-FILE) 992999 MOVE CUST-ADDR1 TO RPT-ADDR1 947999 939999

 CUSTOMER CUST-ADDRESS

95 CUST-ADDR2 948999 29 (CUSTOMER-FILE) 993999 MOVE CUST-ADDR2 TO RPT-ADDR2 948999 932999

 CUSTOMER CUST-ADDRESS

 96 CUST-CITY 949999 15 (CUSTOMER-FILE)

 CUSTOMER CUST-ADDRESS

 93 CUST-CREDIT 951999 3 (CUSTOMER-FILE)

 CUSTOMER

88 CUST-CREDIT-EXEC 952999 (CUSTOMER-FILE) 987999 IF NOT CUST-CREDIT-EXEC 952999

 CUSTOMER CUST-CREDIT

 88 CUST-CREDIT-GOOD 953999 (CUSTOMER-FILE)

 CUSTOMER CUST-CREDIT

 88 CUST-CREDIT-POOR 954999 (CUSTOMER-FILE)

 CUSTOMER CUST-CREDIT

93 CUST-NAME 945999 29 (CUSTOMER-FILE) 991999 MOVE CUST-NAME TO RPT-CUST-NAME 945999 928999

 CUSTOMER

93 CUST-NUM 944999 19 (CUSTOMER-FILE) 999999 MOVE CUST-NUM TO RPT-CUST-NO 944999 926999

 CUSTOMER

96 CUST-ZIP-CODE 959999 5 (CUSTOMER-FILE) 994999 MOVE CUST-ZIP-CODE TO RPT-ZIP 995999 934999

 CUSTOMER CUST-ADDRESS

 CUST-ADDR2

 91 CUSTOMER 943999 194

FD CUSTOMER-FILE 937999 979999 OPEN INPUT CUSTOMER-FILE 937999

984999 READ CUSTOMER-FILE RECORD 937999

125999 CLOSE CUSTOMER-FILE 937999

91 DETAIL-REC 924999 133 981999 MOVE SPACES TO DETAIL-REC 924999

195999 WRITE DETAIL-REC AFTER 924999 961999

 POSITIONING POSITION-IND-WS

196999 MOVE SPACES TO DETAIL-REC 924999

91 PAGE-COUNT-WS 969999 2 197999 ADD PAGE-INCREMENT-WS TO 962999 969999

 PAGE-COUNT-WS

198999 IF PAGE-COUNT GREATER THAN +58 969999

118999 MOVE +4 TO PAGE-COUNT-WS 969999

91 PAGE-INCREMENT-WS 962999 1 194999 MOVE 1 TO PAGE-INCREMENT-WS 962999

197999 ADD PAGE-INCREMENT-WS TO 962999 969999

 PAGE-COUNT-WS

 Field descriptions

Chapter 2. Program Processor 2-13

2.3 Output

LV
The level number of the data item. For items for which level number is not appli-
cable, codes provide information about the item:

■ FD — File description

■ SD — Sort description

■ DC — Communication description

■ RD — Report description

No level number is provided for definitions of index names used by the
INDEXED BY clause.

DATA-NAME
Name of the data item. DATA NAME can be a file name, record name, or an
element name.

SRC-LN
The line number of the source line where the data item is defined.

SIZE
The size of the data item. Parentheses enclose a size reported for a group item.

OCC
The number of occurrences of the data item if the definition of the item uses an
OCCURS clause.

QUALIFICATION
The name(s) of other data item(s) to which the subject data item is subordinate.
The file name is enclosed by parentheses. Highest level qualifiers (for example,
files) are listed first, followed by record names. The minimum qualification
needed to make the name unique is flagged with an asterisk (*). If there are two
identical data names at the same level in the same structure, those data names
cannot be uniquely identified; a *$$$ diagnostic will appear in the listing.

REF-LN STATEMENT
A list of statement (including starting source line numbers) that refer to the data
item.

REF-LN-NBRS
The source line number where each data item in the REF-LN STATEMENT entry
is defined. REF-LN-NBRS are reported for all data items (including the subject
item) in order of occurrence in the statement.

2-14 CA-IDMS Dictionary Loader

2.4 Parameter Statement

 2.4 Parameter Statement

Specifies overrides to Program Processor

The parameter statement specifies override processing options for the Program
Processor. Under VSE/ESA, this statement must be used to specify options; under
OS/390, this statement can be used but it is usually more convenient to specify options
in the JCL in the PARM clause of the EXEC statement.

Coding rules: The following rules apply to coding parameter statements for the
Program Processor:

■ Parameter statements, if used, must be included at the beginning of the COBOL
source program.

■ Multiple statements can be entered.

■ Statements can be coded in positions 1 through 72.

■ Options can be specified in any order, with one or more options per statement and
at least one blank or comma between specifications.

 Syntax

��─── PRAN ───�

 >─┬──────────────┬───�

├─ SYSref ← ─┬─┘

└─ NOSYsref ─┘

 >─┬──────────────┬───�

├─ SOUrce ← ─┬─┘

└─ NOSOurce ─┘

 >─┬────────────┬───�

├─ SUMm ← ─┬─┘

└─ NOSUmm ─┘

 >─┬────────────┬───�

├─ DMAp ← ─┬─┘

└─ NODMap ─┘

 >─┬─────────────┬──�

├─ DXRef ← ─┬─┘

└─ NODXref ─┘

 >─┬────────────┬───�

├─ DIAg ← ─┬─┘

└─ NODIag ─┘

 >─┬─────────────┬──�

├─ ANS ─────┬─┘

├─ ANS68 ───┤

├─ ANS74 ───┤

└─ NOAns ← ─┘

 >─┬───────────┬──�

├─ FLO ← ─┬─┘

└─ NOFlo ─┘

 >─┬───────────┬──��

├─ NUM ← ─┬─┘

└─ NONum ─┘

 Parameter list

Chapter 2. Program Processor 2-15

2.4 Parameter Statement

PRAN
Identifies the statement. Note that this keyword must be used to distinguish this
statement from COBOL source statements.

SYSref/NOSYsref
Specifies whether the data usage file is to be produced as follows:

■ SYSREF (default) — The file is to be produced.

■ NOSYSREF — The file is not to be produced.

SOUrce/NOSOurce
Specifies whether the COBOL source program is to be listed in the output, as
follows:

■ SOURCE — The source program is to be listed.

■ NOSOURCE (default) — The source program is not to be listed.

SUMm/NOSUmm
Specifies whether the Management Summary Report is to be printed, as follows:

■ SUMM (default) — The report is to be printed.

■ NOSUMM — The report is not to be printed.

DMAp/NODMap
Specifies whether the File and Record Layouts Report is to be printed, as follows:

■ DMAP (default) — The report is to be printed.

■ NODMAP — The report is not to be printed.

DXRef/NODXref
Specifies whether the DATA DIVISION Cross-Reference Report is to be printed,
as follows:

■ DXREF (default) — The report is to be printed.

■ NODXREF — The report is not to be printed.

DIAg/NODIag
Specifies whether the Diagnostic Report is to be printed, as follows:

■ DIAG (default) — The report is to be printed.

■ NODIAG — The report is not to be printed.

ANS/ANS68/ANS74/NOAns
Specifies the type of errors to be reported in the Diagnostic Report, as follows:

■ ANS — Violations of both the 1968 and 1974 ANS standards are to be
reported.

■ ANS68 — Only violations of the 1968 ANS standards are to be reported.

■ ANS74 — Only violations of the 1974 ANS standards are to be reported.

■ NOANS (default) — No ANS violations are to be reported.

2-16 CA-IDMS Dictionary Loader

2.4 Parameter Statement

FLO/NOFlo
Specifies whether FLO diagnostics are to be reported in the Diagnostic Report, as
follows:

■ FLO (default) — FLO diagnostics are to be reported.

■ NOFLO — FLO diagnostics are not to be reported.

NUM/NONum
Specifies whether the original line numbers present in the COBOL source program
are to be used in reports to refer to source statements, as follows:

■ NUM (default) — The line numbers already associated with source statements
are to be used in reports to refer to source statements

■ NONUM — Line numbers are to be assigned sequentially to all source state-
ments, and these new line numbers are to be used in reports to refer to source
statements.

Chapter 2. Program Processor 2-17

2.5 Executing the Program Processor

2.5 Executing the Program Processor

JCL for executing the Program Processor under OS/390 and VSE/ESA is shown
below. Under VSE/ESA, processing options must be specified with the parameter
statement. Under OS/390, although the parameter statement can be used, it is usually
easier to specify options by using the PARM clause of the EXEC statement.

OS/390 JCL — PRANCOB

//PRANCOB EXEC PGM=PRANCOB,REGION=1924K,PARM='parameter options'

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//PRANLIB DD DSN=user.copylib,DISP=SHR ← Include only if program contains COBOL

 COPY statements

//PRANREF DD DSN=reflib(member-name),DISP=OLD ← Include only if using LIBRARY option

//PRANREF DD DSN=sysref,DISP=((NEW,catlg), ← Include only if using DISK option

// UNIT=disk,VOL=SER=nnnnnn,

// SPACE=(trk,(19,19),rlse),

// DCB=(RECFM=FB,LRECL=89,BLKSIZE=3129

//PRANWRK DD UNIT=disk,SPACE=(cyl,(5,5))

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD @

//SYSLST DD SYSOUT=A

//SYSIDMS DD @

dmcl=dmcl-name

Insert other SYSIDMS parameters as appropriate

//SYSIPT DD @

Insert COBOL source statements

idms.dba.loadlib Data set name of the load library containing the DMCL
and database name table load modules

idms.loadlib Data set name of the load library containing CA-IDMS
system software modules

BLKSIZE=3129 block size of data usage file; must be multiple of 80

catlg disposition of new file: CATLG, PASS or KEEP

cyl,(5,5) file space allocation of work file

disk symbolic device name of disk file

nnnnnn serial number of disk volume

parameter options options associated with the Parameter statement for the
Program Processor. Multiple options can be specified;
keywords must be separated by blanks or commas; the
entire entry must be enclosed in single quotes. Note
that the keyword PRAN shown in the syntax for the
parameter statement must not be included with options
specified here.

reflib(member-name) data set name of data usage file

sysref data set name of data usage file

2-18 CA-IDMS Dictionary Loader

2.5 Executing the Program Processor

Note: Note that the larger the value specified in the REGION parameter, the more
efficiently the Program Processor will run.

��The DISK option and LIBRARY option are documented in Chapter 3, “Cross Ref-
erence Processor” on page 3-1.

VSE/ESA JCL — PRANCOB

// DLBL SSLn,'user.srclib'

// EXTENT ,nnnnnn

// LIBDEF SL,SEARCH=SSLn,TEMP

// DLBL PRANREF,'sysref',2999/365,SD

// EXTENT SYS919,nnnnnn,1,,ssss,299

// ASSGN SYS919,DISK,VOL=nnnnnn,SHR

// DLBL PRANWRK,'pranwork',9,SD

// EXTENT SYS911,nnnnnn,1,ssss,399

// ASSGN SYS911,DISK,VOL=nnnnnn,SHR

// EXEC PRANCOB,SIZE=512K

parameter statements(s)

=COPY IDMS member statement or COBOL source statements

/@

Note: The keyword PRAN must appear at the beginning of each parameter statement.
PRAN is only used in the parameter statement for this component.

trk,(19,19),rlse file space allocation of data usage file

user.copylib data set name of COBOL copy book library

dcmsg DDname of the system message (DDLDCMSG) area

idms.sysmsg.ddldcmsg Data set name of system message (DDLDCMSG) area

SYSIDMS DDname of the CA-IDMS parameter file specifying
runtime directives and operating system-dependent
parameters.

��For a description of the SYSIDMS parameter file,
see CA-IDMS Database Administration.

nnnnnn serial number of disk volume

pranwork file-id for work file

ssss starting track (CKD) or block (FBA) of disk extent

sysref file-id for sequential file containing data usage file

SYS919 logical unit assignment for data usage file (SYS010
required)

SSLn filename of source statement library

SYS911 logical unit assignment for work file (SYS011 required)

user.srclib source statement library containing data usage files

Chapter 2. Program Processor 2-19

2.5 Executing the Program Processor

Note: The Program Processor must run in a partition that is at least 512 K. The
larger the partition size, the more efficiently the Program Processor will run.

JCL for VSE/ESA source statement library: The optional JCL shown below
places the data usage file generated by the Program Processor into a source statement
library. From the source statement library, data usage files can be accessed by the
Cross Reference Processor and the DDDL Generator.

If the source statement library option is to be used, add this JCL to the JCL for exe-
cuting the Program Processor, shown above.

// DLBL IJSYSIN,'sysref'

// EXTENT SYSIPT,nnnnnn

 ASSGN SYSIPT,DISK,VOL=nnnnnn,SHR

// DLBL SSLn,'user.srclib'

// EXTENT ,nnnnnn

// LIBDEF SL,TO=SSLn,TEMP

// EXEC LIBR

 CLOSE SYSIPT,SYSRDR

Note that the output is placed in the X. sublibrary.

SSLn filename of source statement library

2-20 CA-IDMS Dictionary Loader

Chapter 3. Cross Reference Processor

3.1 About the Cross Reference Processor . 3-3
3.2 Overview . 3-4
3.3 Developing a File of Control Statements . 3-7
3.4 Filling in Worksheets . 3-10
3.5 Parameter Statement . 3-13
3.6 Title Statement . 3-17
3.7 Selection Statement . 3-18
3.8 Sample Control File . 3-19
3.9 System Data Cross-Reference Report . 3-20
3.10 Dictionary of Data Names Report . 3-23
3.11 Executing the Cross Reference Processor 3-24

Chapter 3. Cross Reference Processor 3-1

3-2 CA-IDMS Dictionary Loader

3.1 About the Cross Reference Processor

3.1 About the Cross Reference Processor

Tracks all references to data items: The Cross Reference Processor analyzes a
collection of data usage files to track all references to data elements throughout a
system of COBOL programs. Control statements assign a descriptive title to each
subset of records to be reported together (most commonly a file), specify the 01-level
records that are to be associated with each title, and specify processing options.

Output: Output form this module are two reports that provide extensive cross-
reference information about the system of programs: the System Data Cross-Reference
Report and the Dictionary of Data Names Report. These reports aid in developing
control statements for the DDDL Generator.

What follows: This chapter presents an overview of the Cross Reference Processor,
describes its control statements and reports, and provides instructions for executing the
Cross Reference Processor under OS/390 and VSE/ESA.

Chapter 3. Cross Reference Processor 3-3

3.2 Overview

 3.2 Overview

Purpose of the processor: The main purpose of the Cross-Reference Processor is
to produce the System Data Cross-Reference Report. The control statements associ-
ated with running this component allow the user to specify the organization of the
information to be included in this report as follows:

■ Group information about a file that has many different names.

Information about a file that has many different names can be grouped under one
descriptive title. A single file (for example, a transaction file) may be named
differently (for example, TRANSFILE, TRANS-IN, TRANS-OUT) in the system
of programs. Control statements can be used to assign a descriptive name to such
a file and to connect the appropriate descriptions from specific programs to that
name.

■ Associate record descriptions with a specific file.

Record descriptions can be associated with a specific file. Within the DATA
DIVISION of each program, any number of record descriptions that apply to the
same file can exist. Control statements can be used to specify which record
descriptions apply to a specific file.

■ Associate record descriptions with a specific program section.

Record descriptions can be associated with a specific section of the program.
Record descriptions can be present in the FILE, WORKING-STORAGE, or
LINKAGE sections of programs. Control statements can be used to designate the
appropriate section if necessary.

File of control statements: A file of control statements is illustrated in the figure
below. The parameter statement specifies processing options for the run. The rest of
the file consists of sets of control statements (one set for each subset of records for
which cross referencing is desired). Each set contains a title statement and one or
more selection statements. Syntax and rules for control statements are presented later
in this chapter.

3-4 CA-IDMS Dictionary Loader

3.2 Overview

Establishing processing options: The parameter statement establishes proc-
essing options for the run. Each set of control statements identifies a group of records
(most commonly a file) for which an individual cross-reference report is to be
produced.

Assigning a title to the report: A set of control statements assigns a descriptive
title to the report on the subset of records with the title statement and specifies, with
selection statements, the 01-level records that are to be included in the report. Typi-
cally, many sets of control statements are specified in the file of control statements.

System Data Cross-Reference report: During execution, the Cross Reference
Processor cross references data elements throughout the system of programs, as
directed by the control file, and produces a series of reports (one for each set of
control statements). These reports are known collectively as the System Data Cross-
Reference Report. In the reports, all PROCEDURE DIVISION statements using a spe-
cific data element are listed below the element. Additionally, all data elements are
identified by their data names and associated with their program names and records
names. Source line numbers for each data name and PROCEDURE DIVISION state-
ment are also supplied.

Sample report: Because the System Data Cross-Reference Report lists data ele-
ments in order by starting columns, synonymous elements are grouped together and
overlapping data fields are close to one another in the report. Thus, all uses of any
column or range of columns is easy to research, as shown below:

Chapter 3. Cross Reference Processor 3-5

3.2 Overview

SYSTEM DATA CROSS REFERENCE FOR REPORT: CUSTOMER RECORD DICTIONARY LOADER 28 JAN 99 1425 PAGE 2

FROM TO LV DATA NAME SRC LN PROG ID REC NAME SIZE USAGE OCCURS QUALIFIER

REF LN REF STATEMENT

1 19 93 CUST-NUMBER 947999 PRANDEM1 CUSTOMER 19 DISP CUSTOMER-FILE

131999 MOVE SPACES TO CUST-NUMBER

138999 IF ORD-CUST-NUMBER = CUST-NUMBER

144999 MOVE CUST-NUMBER TO RPT-CUST-NO

 93 CUST-NUM 944999 PRANDEM2 CUSTOMER 19 DISP CUSTOMER-FILE

199999 MOVE CUST-NUM TO RPT-CUST-NO

 11 39 93 CUST-NAME 948999 PRANDEM1 CUSTOMER 29 DISP CUSTOMER-FILE

145999 MOVE CUST-NAME TO RPT-NAME

 93 CUST-NAME 945999 PRANDEM2 CUSTOMER 29 DISP CUSTOMER-FILE

991999 MOVE CUST-NAME TO RPT-CUST-NAME

 93 CUST-NAME 941999 PRANDEM3 CUST 29 DISP CUSTFILE

964999 MOVE CUST-NAME TO MAIL-LINE-1

Dictionary of Data Names reports: The Dictionary of Data Names Report is an
optional report that can also be produced by a Cross Reference Processor run. This
report lists all data elements alphabetically with additional information that points to
the definitions of data items in the source code. Thus, this report can be used to
control changes in programs, files, records, or data elements.

3-6 CA-IDMS Dictionary Loader

3.3 Developing a File of Control Statements

3.3 Developing a File of Control Statements

Control file specifies report organization: To direct the operation of the Cross
Reference Processor, a file of control statements must be developed. The control file
specifies the organization of information to be reported in the System Data Cross-
Reference Report by identifying groups of records (most commonly files) for which
individual cross-reference reports are needed. The control file uses three types of
statements:

■ The parameter statement (to specify processing options)

■ The title statement (to identify a group of records)

■ The selection statement (to specify selection criteria for records in a group)

Worksheets: To aid in developing a file of control statements, a worksheet is pro-
vided. Information found in the File and Record Layouts Reports and the DATA
DIVISION Cross Reference Reports for the system of programs aids in filling out the
worksheets.

Control file optional, but recommended: Note that the purpose of the control
file is to limit the amount of information cross referenced together so that the report
can be used to research various descriptions of the same records easily. The control
file can be omitted, in which case all records from all programs and files will be
reported together. But the value of the System Data Cross-Reference Report depends
upon its organization. A carefully planned control file results in a more useful report.

Steps: To develop a file of control statements, follow the four steps outlined below:

Step 1 — Specify processing options: Refer to the following table and determine
whether the default processing options in effect are acceptable. Select any override
processing options needed for the run. Specify the override options with a parameter
statement. This statement, if used, must be the first statement in the control file. For
syntax and rules, refer to 3.5, “Parameter Statement” on page 3-13 later in this
chapter.

Parameter Default Option Override Option

FILLER/NOFILLER NOFILLER — Data elements
named FILLER are not to be
included in the System Data
Cross-Reference Report.

FILLER — Data elements
named FILLER are to be
included in the System Data
Cross-Reference Report.

REFONLY/NOREFONLY REFONLY — Only data items
referred to by a PROCEDURE
DIVISION statement are to be
included in the System Data
Cross-Reference Report.

NOREFONLY — All data
items are to be included in
the System Data Cross-
Reference Report.

Chapter 3. Cross Reference Processor 3-7

3.3 Developing a File of Control Statements

Parameter Default Option Override Option

DICTIONARY/ NODICTIONARY NODICTIONARY — The Dic-
tionary of Data Names Report is
not to be printed.

DICTIONARY — The Dic-
tionary of Data Names Report
is to be printed.

LIBRARY/NOLIBRARY NOLIBRARY — Data usage files
are not to be read from a library.
The default DISK (see below)
must be taken with NOLIBRARY.

LIBRARY — Data usage
files are to be read from a
partitioned data set (OS/390)
or source statement library
(VSE/ESA).

DISK/NODISK DISK — Data usage files are to
be read from a sequential data set.

NODISK — Data usage files
are not to be read from a
sequential data set.
LIBRARY (see above) must
be specified with NODISK.

MEMBER-NAME-IS-ID/
NOMEMBER-NAME-IS-ID

MEMBER-NAME-IS-ID — All
of the member names supplied
with the LIBRARY parameter are
to be used as the program IDs on
the reports.

NOMEMBER-NAME-IS-ID
— The program names in the
source programs are to be
used as the program IDs on
the reports.

PROGRAM-ID -- PROGRAM-ID — The
source program identified by
source-program-name is to be
identified on reports by the
new name specified.

LIMIT/NOLIMIT LIMIT — Complete reference
statements for each data item up
to the limit specified are to be
listed. 10 is the default limit.

NOLIMIT — An unlimited
number of complete reference
statements are to be listed for
each data item.

Step 2 — Identify groups of records: Determine the groups of records for which
cross referencing is desired and assign a descriptive title to each group. Any group of
records can be cross referenced, but the most common group is the file. Therefore,
consider first the files common to multiple programs in the system of programs being
processed and give each file a descriptive title. Then, identify any other group of
records for which cross referencing would be useful. For example, defining a group of
records to be all records from working storage from all programs yields a cross-
reference report that allows extensive analysis of the use of work records for the
system of programs.

Step 3 — Fill in worksheets: Determine which records are to be included in each
group and identify these records by filling in worksheets. Completed worksheets will
be used to code title and selection statements. A sample worksheet is shown below.
Instructions for filling in worksheets are presented later in this session.

3-8 CA-IDMS Dictionary Loader

3.3 Developing a File of Control Statements

Step 4 — Create the control file: When the worksheets are complete, create the
control file by generating one statement for each line on each worksheet. If used, the
parameter statement must be first, followed by the title statement and its selection
statements. Continue to code a title statement and selection statements for all of the
remaining worksheets. For syntax and rules for coding title statements and selection
statements, refer to 3.6, “Title Statement” on page 3-17 and 3.7, “Selection Statement”
on page 3-18 later in this chapter.

Chapter 3. Cross Reference Processor 3-9

3.4 Filling in Worksheets

3.4 Filling in Worksheets

Write in the title first: Start a worksheet for each group of records, as shown in the
figure above by writing the descriptive title (that is, file or other group identifier) after
the header REPORT=. The descriptive title clearly identifies the group of records,
most commonly a particular file that may be known by many different names in the
system of programs. Next, enter from one to three of the following variables, line by
line, on each worksheet:

 1. Program ID

 2. Record name

 3. Qualification

Each line represents one selection statement: Each line on the worksheet
represents one selection statement. The variable(s) specified on each line causes the
Cross Reference Processor to select the defined subset of records. For example, sup-
plying a program ID only specifies that all records from the named program are to be
included in the report, supplying a record name only specifies that the record associ-
ated with that name is to be included. Often, a single record from a file is called by
many different names in a system of programs. In this case, many separate names are
needed to specify the selection of all copies of the record. Each line contains a dif-
ferent name for the record. Guidelines for specifying various combinations of the
three variables are presented below.

Use Program Processor reports to fill in worksheets: The reports produced
by the Program Processor can be helpful in filling in the worksheets:

■ The File and Record Layouts Report can be used to find file names and record
names without having to search through the COBOL source code for all of the
programs. This report can also be used to research READ INTO and WRITE
FROM statements to locate the resultant copies of records that may reside in the
WORKING STORAGE or LINKAGE sections under different names.

■ The DATA DIVISION Cross Reference Report can be used to track MOVE state-
ments that move 01-level records from the FILE section to the WORKING
STORAGE section or the reverse. This tracking aids in locating copies of
records.

Guidelines for specifying selection variables: The record name is the key var-
iable in specifying selection criteria. Most commonly, the record name alone is used
to identify a member of the group of records to be reported on. However, it may be
advantageous to further qualify record name (because, for example, the name is not
unique) or to request the inclusion of records without regard to record name (because,
for example, the objective of the report is to look at all records in the LINKAGE
section of all programs). All possible combinations of program id, record name, and
qualification are valid. Listed below are guidelines for supplying the program id, the
record name, and/or a qualification. Note that the qualification can be an FD file
name or keywords to indicate the WORKING STORAGE or LINKAGE sections.

3-10 CA-IDMS Dictionary Loader

3.4 Filling in Worksheets

Record name only If the same record name is used in different programs
and always exclusively for the file under consideration,
supply only the record name.

Record name and FD file
name (that is, qualifica-
tion)

If the same record name is used in a single program for
multiple files, supply the record name and the FD file
name. Program ID can be left blank unless the record
name is used in other ways in the system of programs
being processed.

Record name and
program ID

If the same record name is used for different files in dif-
ferent programs, supply the record name and program
ID for each record that applies to the file under consid-
eration. Qualification can be left blank unless the record
name is also used for multiple files in the program.

FD file name (that is,
qualification)

If all record descriptions for an FD are to be included,
supply the FD file name under qualification. If,
throughout the system of programs, the FD file name is
used only to refer to the file to be cross referenced
under the specified title, leave the program ID and
record name blank. All record descriptions for the FD
file name from any program in the system will be cross
referenced and reported. However, if the FD file name
is used for different files in different programs, a line
must be completed for each program. Each line must
supply the FD file name, under qualification, as well as
the program id. All record descriptions for the FD file
name in the specified programs will be cross referenced
and reported.

WORKING STORAGE
or LINKAGE (qualifica-
tion)

If all record descriptions from the WORKING
STORAGE or LINKAGE sections are to be included,
supply the appropriate keyword under qualification.

None of the three vari-
ables

If all records from all programs are to be cross refer-
enced together, omit selection statements altogether.

Chapter 3. Cross Reference Processor 3-11

3.4 Filling in Worksheets

Summary table: The table below summarizes the subsets of records selected based
on the combination of variables specified.

Variables in the selection statement

Blank Specified Blank The named record from all
programs with no qualifica-
tion (that is, from all FD
files and from all sections).

Blank Specified Specified The named record from all
programs as qualified (that
is, from the FD file specified
or from the working storage
or linkage sections).

Blank Blank Specified All records from all pro-
grams as qualified.

Specified Blank Blank All records from the named
program (with no qualifica-
tion).

Specified Blank Specified All records from the named
program as specified.

Specified Specified Blank The named record from the
named program (with no
qualification)

Specified Specified Specified The named record from the
named program as qualified.

Blank Blank Blank All records from all pro-
grams (with no qualification).

3-12 CA-IDMS Dictionary Loader

3.5 Parameter Statement

 3.5 Parameter Statement

Specifies overrides: The parameter statement specifies override processing options
for the Cross-Reference Processor.

Coding rules: The following rules apply to coding parameter statements.

■ Parameter statements, if used, must be included at the beginning of the file of
control statements.

■ Multiple statements can be entered.

■ Statements can be coded in positions 1 through 72.

■ Options can be specified in any order, with one or more options per statement and
at least one blank or comma between specifications.

■ If an option requires a list of information, the list must follow the option keyword
immediately on the same statement. If the list must be continued to a new line,
the option keyword must be repeated. For the PROGRAM-ID option, source-
program-name (see syntax below) must also be repeated when a list of new names
is being continued.

 Syntax

��─┬────────────────┬───�

├─ FILler ─────┬─┘

└─ NOFiller ← ─┘

 >─┬───────────────┬──�

├─ REfonly ← ─┬─┘

└─ NORefonly ─┘

 >─┬────────────────────┬───�

├─ DICtionary ─────┬─┘

└─ NODICtionary ← ─┘

 >─┬───┬────────────────────�

 │ ┌─────────────────────────────────────┐ │

├─ LIBrary ─↓── member-name ─┬──────────────────┬─┴─┬─┘

│ └─ = program-name ─┘ │

└─ NOLIBrary ← ─────────────────────────────────────┘

 >─┬────────────┬───�

├─ DISk ← ─┬─┘

└─ NODISk ─┘

 >─┬─────────────────────────┬──�

├─ MEMber-name-is-id ← ─┬─┘

└─ NOMember-name-is-id ─┘

 >─┬───┬──────────────�

 │ ┌──┐ │

│ │ ┌───── , ──────┐ │ │

└─ PROgram-id ─↓── source-program-name ─↓─ = new-name ─┴──┴─┘

 >─┬──────────────────────────────┬───��

├─ LIMit = ─┬─ 19 ← ───────┬─┬─┘

│ └─ list-limit ─┘ │

 └─ NOLIMit───────────────────┘

 Parameter list

Chapter 3. Cross Reference Processor 3-13

3.5 Parameter Statement

FILler/NOFiller
Specifies whether the System Data Cross-Reference Report is to include data ele-
ments named FILLER, as follows:

■ FILLER — Data elements named FILLER are to be included in the System
Data Cross-Reference Report.

■ NOFILLER (default) — Data elements named FILLER are not to be included
in the System Data Cross-Reference Report.

REfonly/NORefonly
Specifies whether the System Data Cross-Reference Report is to include only the
data items referred to by a PROCEDURE DIVISION statement, as follows:

■ REFONLY (default) — Only those data items referred to be a PROCEDURE
DIVISION statement are to included in the System Data Cross-Reference
Report.

■ NOREFONLY — All data items are to included in the System Data Cross-
Reference Report. Note that this parameter does not affect the inclusion of
data items named FILLER.

DICtionary/NODICtionary
Specifies whether to print the Dictionary of Data Names Report, as follows:

■ DICTIONARY — The Dictionary of Data Names Report is to be printed.

■ NODICTIONARY (default) — The Dictionary of Data Names Reports is not
to be printed.

LIBrary/NOLIBrary
Specifies information about the data usage files to be input to the DDDL Gener-
ator, as follows:

■ LIBRARY identifies the data usage file. Each occurrence of member-name
identifies a data usage file. All member names specified must be members of
the same partitioned data set (OS/390) or source statement library (VSE/ESA).
The optional entry, program-name, can be specified for any member name
and overrides the use of the member name as the program ID on the gener-
ated ADD PROGRAM syntax.

LIBRARY must always be specified with NODISK (see below) if all of the
data usage files are stored in a partitioned data set (OS/390) or source state-
ment library (VSE/ESA. It can be specified with DISK if data usage files are
to be read from both a sequential data set, and partitioned data set (OS/390)
or a source statement library (VSE/ESA).

■ NOLIBRARY (default) specifies that data usage files are not to be read from
a partitioned data set (OS/390) or source statement library (VSE/ESA). If the
default of NOLIBRARY is taken, then the default of DISK (see below) must
also be taken.

DISk/NODISk
DISK/NODISK are options that are used with LIBRARY/NOLIBRARY, as
follows:

3-14 CA-IDMS Dictionary Loader

3.5 Parameter Statement

■ DISK (default) specifies that data usage files are to be read from a sequential
data set. DISK must always be specified with NOLIBRARY. DISK can be
specified with LIBRARY if the data usage files are to be read from both a
sequential data set and a partitioned data set (OS/390) or source statement
library (VSE/ESA).

■ NODISK specifies that data usage files are not to be read from a sequential
data set. LIBRARY (see above) must be specified with NODISK if all of the
data usage files are stored in a partitioned data set (OS/390) or source state-
ment library (VSE/ESA).

MEMber/NOMember
Specifies the source of the program IDs to be used on reports, as follows:

■ MEMBER-NAME-IS-ID (default) — All of the member names supplied with
the LIBRARY parameter are to be used as program IDs on the reports. Note
that once member names are assigned as program IDs with this parameter,
member names must also be used for program IDs on selection statements.

■ NOMEMBER-NAME-IS-ID — The program ID specified in the
PROGRAM-ID paragraph in the COBOL source program is to be used as the
program id on the report.

Note: To guarantee unique identification of all programs whose data usage files
are stored in a partitioned data set or source statement library, operate under the
default MEMBER-NAME-IS-ID and specify the LIBRARY and NODISK parame-
ters. To guarantee unique identification of all programs whose data usage files are
stored in sequential data sets, use the PROGRAM-ID parameter described below,
as needed.

PROgram-id
Provides unique program IDs for source programs that have the same name (that
is, duplicate names in their internal PROGRAM-ID paragraphs) or changes an
internal PROGRAM-ID name to another name for printing in the reports. This
parameter is only used with data usage files that are stored in sequential data sets.

Source-program-name specifies the source PROGRAM-ID name that is to be
changed. Occurrences of new-name specify the names that will be assigned
sequentially whenever the common PROGRAM-ID name (that is, source-program-
name) appears in the input data usage files. Source-program-name = new-name
can be repeated to name other PROGRAM-ID names and their associated new
names.

Note: Whenever internal PROGRAM-ID names are changed in this way, the new
names must be used for specifying program-ID on selection statements.

LIMit/NOLIMit
Establishes the maximum number of reference statements per data item to be
listed completely in the System Data Cross-Reference Report, as follows:

■ LIMIT=10 (default)/list-limit — To be listed are complete reference state-
ments including line number and text for each data item up to the default
limit taken (10) or the limit specified. When the limit is reached, only line

Chapter 3. Cross Reference Processor 3-15

3.5 Parameter Statement

numbers are listed for the remaining references to the data item. Limit=O
specifies that only line numbers are to be listed for all references to the item.

■ NOLIMIT — To be listed are the line numbers and statements for all refer-
ences to all data items.

3-16 CA-IDMS Dictionary Loader

3.6 Title Statement

 3.6 Title Statement

Purpose: The title statement assigns a descriptive title to the report pages related to
a specific group of records (for example, a file) and marks the beginning of a new set
of control statements.

Specify for each set of control statements: A title page must be specified for
each set of control statements. The title specified is printed on the first line of every
page associated with the set of control statements. To avoid printing a title, the title
statement supplied can specify only the keyword identifier and an equal (=), omitting
the descriptive text.

Note: If the title statement is omitted, the following text will be printed as the title
"No Report Title" The Cross Reference Processor will assume that all subsequent
selection statements pertain to the same group of records until it finds another title
statement. The title statement can only be omitted for the first set of selection state-
ments. The title statement can be coded anywhere using positions 1 through 72.

 Syntax

��─┬─ REPort ─┬─ = report-title ──��

└─ FILe ───┘

 Parameter list

REPort/FILe
Identifies the statement as a title statement. One of these keywords followed by
an equal sign (=) must be specified. The keyword specified, the equal sign, and
report-title will appear on the report.

Report-title supplies a descriptive report title. It must be a 1- to 30-character
alphanumeric value. Quotes are not required and, if used, become a part of the
title printed on the report.

Example: A sample title statement is shown below:

FILE=1 @@@ TRAFFIC FILE @@@

Chapter 3. Cross Reference Processor 3-17

3.7 Selection Statement

 3.7 Selection Statement

Purpose: The selection statement specifies criteria for selecting 01-level records to
be included in the cross-reference information for the descriptive title specified in the
title record. This statement can specify three variables: the program name, the record
name, and a qualification (that is, and FD file name, WORKING STORAGE, or
LINKAGE). The variables specified restrict record selection. One, two, or all three of
these variables can be specified. Typically, multiple selection statements are specified
following each title statement.

Coding rules: The selection statement can be coded anywhere using positions 1
through 72.

 Syntax

��─┬────────────────┬─ : ─┬───────────────┬───────────────────────────────────�

└─ program-name ─┘ └─ record-name ─┘

 >─┬────────────────────────────────┬───��

├─ IN ─┬─┬─ FD-file-name ──────┬─┘

└─ OF-─┘ ├─ 'WORKING-STORAGE' ─┤

└─ 'LINKAGE' ─────────┘

 Parameter list

program-name
Specifies a PROGRAM-ID name. This specification restricts record selection to
records in the named program. Program-name must be the internal program name
unless that name has been changed by the runtime options
MEMBER-NAME-IS-ID and LIBRARY, or by the runtime option
PROGRAM-ID. When these options are used to rename programs (that is, in the
parameter statement) the new name must be used when specifying program-name.

:
The colon (:) is required and must be specified regardless of other entries speci-
fied.

record-name
Specifies the name of an 01-level record as it appears in a source program. This
specification restricts record selection to the named record.

IN/OF
Specifies an FD file name used in a source program or the keywords
'WORKING-STORAGE' or 'LINKAGE'. This specification restricts record
selection to records associated with the FD name specified or to records located in
the WORKING STORAGE or LINKAGE sections of the programs being proc-
essed. WORKING-STORAGE and LINKAGE must be enclosed in single quotes.
At least one space is required on either side of IN or OF.

Example statement: A sample selection statement is shown below. This statement
specifies that all records named TRF-IN-REC are to be selected.

:TRF-IN-REC

3-18 CA-IDMS Dictionary Loader

3.8 Sample Control File

3.8 Sample Control File

A sample control file is shown below. A parameter statement is shown first, followed
by two sets of control statements pertaining to two files.

DICTIONARY

FILE=1 @@@ TRAFFIC FILE @@@

 :TRF-IN-REC

 :TRF-IN-RECORD

 :TRF-OUT-REC

 :TRF-OUT-RECORD

ESTIMATE :WORK-TRF IN 'WORKING-STORAGE'

 :WRK-TRF

FILE=2 @@@ MASTER PROFILE FILE @@@

 :TAPE-IN

 :MPF-REC

 :MPF-RECORD

WRITREP :MAST-REC

 :MAST-PROF-RECORD

 :MASTER-PROF-REC

 :MAST-REC IN MASTER-FILE

 :NEW-PROF-REC

Chapter 3. Cross Reference Processor 3-19

3.9 System Data Cross-Reference Report

3.9 System Data Cross-Reference Report

Description: The System Data Cross-Reference Report provides extensive informa-
tion about the use of data items throughout a system of COBOL programs. The report
begins with a header page that provides a formatted listing of the file of control state-
ments and a count of records found for each selection statement specified. Each sub-
sequent page identifies the subset of records being cross referenced (using the title
form the title statement) and provides detail information about data elements within the
records.

Sample report: In the report sample below, the header page appears first, followed
by the first page in the main body of the report.

SYSTEM DATA CROSS REFERENCE @LIST OF REQUESTED RECORDS@ DICTIONARY LOADER 28 JAN 99 1425 PAGE 1

 REPORT TITLE PROGRAM-ID 91-LEVEL RECORD QUALIFIER COUNT

 CUSTOMER RECORD @ANY PROGRAM@ CUSTOMER 2

 @ANY PROGRAM@ CUST 1

 ORDOR RECORD @ANY PROGRAM@ ORDOR 1

SYSTEM DATA CROSS REFERENCE FOR REPORT: CUSTOMER RECORD DICTIONARY LOADER 28 JAN 99 1425 PAGE 2

FROM TO LV DATA NAME SRC LN PROG ID REC NAME SIZE USAGE OCCURS QUALIFIER

REF LN REF STATEMENT

1 19 93 CUST-NUMBER 947999 PRANDEM1 CUSTOMER 19 DISP CUSTOMER-FILE

131999 MOVE SPACES TO CUST-NUMBER

138999 IF ORD-CUST-NUMBER = CUST-NUMBER

144999 MOVE CUST-NUMBER TO RPT-CUST-NO

 93 CUST-NUM 944999 PRANDEM2 CUSTOMER 19 DISP CUSTOMER-FILE

199999 MOVE CUST-NUM TO RPT-CUST-NO

 11 39 93 CUST-NAME 948999 PRANDEM1 CUSTOMER 29 DISP CUSTOMER-FILE

145999 MOVE CUST-NAME TO RPT-NAME

 93 CUST-NAME 945999 PRANDEM2 CUSTOMER 29 DISP CUSTOMER-FILE

991999 MOVE CUST-NAME TO RPT-CUST-NAME

 93 CUST-NAME 941999 PRANDEM3 CUST 29 DISP CUSTFILE

964999 MOVE CUST-NAME TO MAIL-LINE-1

 Field descriptions

REPORT TITLE
The descriptive title used to identify the group of records and taken from the title
statement.

PROGRAM-ID
The PROGRAM-ID from the selection statement or, if PROGRAM-ID was blank,
the entry *ANY PROGRAM*.

01-LEVEL RECORD
The 01-level record name from the selection statement, or if record name was
blank, the entry *ANY RECORD*.

QUALIFIER
The FD file name, the keywords WORKING STORAGE or LINKAGE, or blank
as specified on the selection statement.

3-20 CA-IDMS Dictionary Loader

3.9 System Data Cross-Reference Report

COUNT
A count of the 01-level records selected as a result of the specifications on the
selection statement.

FOR REPORT
The descriptive title used to identify the group of records and taken from the title
statement.

FROM
The starting position of the data element.

TO
The ending position of the data element.

LV
The level number from the data item description entry.

DATA NAME
The data name from the data item description entry.

SRC LN
The line number of the data item description entry in the source program.

PROG ID
The program ID being used to identify the source program. The program ID may
be the internal PROGRAM-ID from the COBOL source program or a library
member name, depending on the user-defined options in effect from the run.

REC NAME
The 01-level record name from the record description entry where the data
element was found.

SIZE
The size of the data item field.

USAGE
The form in which the data item is to be stored as the result of the source pro-
gram's specifications:

■ GROUP — The data item contains subordinate items.

■ DISP — The data item is stored in character form.

■ DISP-NM — The data item is stored one digit per character position. The
PIC contains only S, 9, and V.

■ COMP — The data item is stored as computational (1,2,3, or 4). The PIC
entry contains only S, 9 and V.

■ NM-EDIT — The data item is a numeric item stored in character format.
The PIC contains some or all of the editing characters +, -, z, $, comma, B,
CR, DB, ., or 0.

The following report writing specifications can also appear in this column:

■ RH — Report heading

■ RF — Report footing

Chapter 3. Cross Reference Processor 3-21

3.9 System Data Cross-Reference Report

■ PH — Page heading

■ PF — Page footing

■ CH — Control heading

■ CF — Control footing

■ DE — Detail

OCCURS
The number of times the data item is repeated as the result of an OCCURS clause.

QUALIFIER
The FD file name or the keywords WORKING STORAGE or LINKAGE to indi-
cate where the data element was found.

REF LN
The line number in the source program from the COBOL statement that follows.

REF STATEMENT
A COBOL statement that refers in any way to the data element.

3-22 CA-IDMS Dictionary Loader

3.10 Dictionary of Data Names Report

3.10 Dictionary of Data Names Report

Description: The Dictionary of Data Names Report lists all record and element
names alphabetically, together with the following information about each item listed:

■ Its position in the record

 ■ Size

 ■ Usage

 ■ Level

■ Source line number

 ■ Program ID

 ■ Member name

■ Internal program ID

 ■ Record name

This report aids in tracking the use of data elements throughout the system of pro-
grams.

Purpose: The purpose of this report is to aid in controlling change. The informa-
tion supplied indicates the exact line in the appropriate COBOL source program where
any data item used throughout the system of programs is defined.

Note: This report is optional and is not produced automatically. To obtain this
report, specify the option DICTIONARY on a parameter control statement for the run.

 Sample report

SYSTEM DATA CROSS REFERENCE @DICTIONARY OF DATA NAMES@ DICTIONARY LOADER 28 JAN 99 1425 PAGE 1

FROM TO SIZE USAGE LVL D A T A N A M E SRCLN PROGRAM MEMBER INTERNAL 91-RECORD-NAME

 ID NAME PROG-ID

1 194 194 GROUP 91 CUST 939999 PRANDEM3 (DISK) PRANDEM3 CUST

31 79 49 GROUP 93 CUST-ADDRESS 949999 PRANDEM1 (DISK) PRANDEM1 CUSTOMER

31 79 49 GROUP 93 CUST-ADDRESS 946999 PRANDEM2 (DISK) PRANDEM2 CUSTOMER

31 79 49 GROUP 93 CUST-ADDRESS 942999 PRANDEM3 (DISK) PRANDEM3 CUST

Chapter 3. Cross Reference Processor 3-23

3.11 Executing the Cross Reference Processor

3.11 Executing the Cross Reference Processor

Job Control Language (JCL) for executing the Cross Reference Processor under
OS/390 and VSE/ESA is shown below. Under both OS/390 and VSE/ESA, processing
options must be specified with the parameter statement.

Note: (OS/390 users only) — The PARM clause of the EXEC statement cannot be
used to specify options when executing this component.

OS/390 JCL — PRANXREF

//PRANXREF EXEC PGM=PRANXREF,REGION=1924K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SORTMSG DD SYSOUT=A

//SORTLIB DD DSN=SYS1,SORTLIB,DISP=SHR

//SORTWK91 DD UNIT=disk,SPACE=(cyl,(5,5))

//SORTWK92 DD UNIT=disk,SPACE=(cyl,(5,5))

//SORTWK93 DD UNIT=disk,SPACE=(cyl,(5,5)) Include only if using

//PRANLIB DD DSN=reflib,DISP=SHR ← LIBRARY option.

//PRANREF DD DSN=sysref1,DISP=SHR

// DD DSN=sysref2,DISP=SHR Include only

. ← if using DISK option

 .

 .

// DD DSN=sysrefn,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD @

//SYSOUT DD SYSOUT=a

//SYSIDMS DD @

dmcl=dmcl-name

Insert other SYSIDMS parameters as appropriate

//SYSIPT DD @

Insert optional control statements here

3-24 CA-IDMS Dictionary Loader

3.11 Executing the Cross Reference Processor

VSE/ESA JCL — PRANXREF

// DLBL SSln,'user.srclib'

// EXTENT ,nnnnnn

// LIBDEF SL,TO=SSln,TEMP

// DLBL PRANREF,'sysref',,SD ← Include only if using DISK option

// EXTENT SYS919,nnnnnn

// ASSGN SYS919,DISK,VOL=nnnnnn,SHR

// DLBL SORTWK1,'WORK1',O,SD

// EXTENT SYS991,nnnnnn,1,,ssss,299

// ASSGN SYS991,DISK,VOL=nnnnnn,SHR

// EXEC PRANXREF,SIZE=128K

optional control statements

/@

idms.dba.loadlib Data set name of the load library containing the DMCL
and database name table load modules

idms.loadlib Data set name of the load library containing CA-IDMS
system software modules

cyl,(5,5) file space allocation of work file

disk symbolic device name of disk file

reflib data set name of partitioned data set containing data
usage files

sysref1, sysref2,

sysrefn
data set names of sequential data sets containing data
usage files

dcmsg DDname of the system message (DDLDCMSG) area

idms.sysmsg.ddldcmsg Data set name of the system message (DDLDCMSG)
area

SYSIDMS DDname of the CA-IDMS parameter file specifying
runtime directives and operating system-dependent
parameters.

��For a complete description of the SYSIDMS param-
eter file, see CA-IDMS Database Administration.

nnnnnn serial number of disk volume

ssss starting track (CKD) or block (FBA) of disk extent

sysref file-id for sequential file containing data usage file

SYS991 logical unit assignment for sort work file

SYS919 logical unit assignment for data usage file (SYS010
required)

user.srclib source statement library containing data usage files

SSln filename of source statement library

Chapter 3. Cross Reference Processor 3-25

3.11 Executing the Cross Reference Processor

3-26 CA-IDMS Dictionary Loader

 Chapter 4. DDDL Generator

4.1 About the DDDL Generator . 4-3
4.2 Overview . 4-4
4.3 Developing a File of Control Statements . 4-7
4.4 Parameter Statement . 4-9
4.5 VERSION Statement . 4-11
4.6 Grouping Statement . 4-12
4.7 Using the Grouping Statement . 4-14
4.8 Editing Generated DDDL Statements . 4-17
4.9 Executing the DDDL Compiler . 4-20

Chapter 4. DDDL Generator 4-1

4-2 CA-IDMS Dictionary Loader

4.1 About the DDDL Generator

4.1 About the DDDL Generator

Purpose: The DDDL Generator reads data usage files and generates the appropriate
DDDL source statements for input to the IDD DDDL compiler. Statements generated
include ADD, PROGRAM, ADD RECORD, and ADD FILE. COBOL substatements
of the RECORD statement are generated for defining elements.

DDDL Generator control statements: Control statements can be used to control
the operation of the DDDL Generator:

■ Grouping-control statements specify to the DDDL Generator those file (or
record) definitions that describe the same file (or record) but have different names
and those file (or record) definitions that have the same name but do not define
the same file (or record).

■ The VERSION statement specifies a VERSION clause, causing the DDDL Gen-
erator to include the specified VERSION clause (instead of the default of
VERSION 01) in every ADD statement generated.

Output: The DDDL Generator produces a listing of statements generated and an
output file containing the statements. This file can be input to the DDDL compiler
directly or edited first and then input to the compiler. The DDDL compiler processes
the generated statements to populate the data dictionary.

What follows: This chapter presents an overview of the DDDL Generator and
instructions on how to develop a file of control statements, edit the generated DDDL
statements, and execute the DDDL Generator under OS/390 and VSE/ESA.

Chapter 4. DDDL Generator 4-3

4.2 Overview

 4.2 Overview

Without control statements: When operated without control statements, the
DDDL Generator generates DDDL ADD statements for each unique program, file, and
record name in the system of programs being processed. An ADD statement is gener-
ated for the first occurrence of each program, file, and record name. Subsequent
occurrences are considered to be duplicates and are ignored. The version clause
VERSION 01 is generated for each ADD statement.

With control statements: The DDDL Generator operates as described above
unless the user supplies control statements. These statements alter the operation of the
DDDL Generator as follows:

Parameter statement: This statement specifies override processing options such as
suppressing a listing of generated statements.

VERSION statement: This statement specifies an alternative VERSION clause. If
this statement is used for a run, the DDDL Generator adds the VERSION clause speci-
fied (instead of VERSION 01) to all generated ADD PROGRAM, ADD FILE, and
ADD RECORD statements. If grouping-control statements (described below) specify
synonyms, the VERSION clause specified is also added to generated SYNONYM
clauses.

Grouping statement: This statement identifies files or records with synonymous or
nonunique names. Synonymous names are different names that refer to definitions of
the same file or record; a nonunique name is a single name that refers to the defi-
nitions of different files or records.

If a grouping statement identifying synonymous names for the same file or record is
used for a run, the DDDL Generator generates an ADD statement for each different
name and a SYNONYM clause within each ADD statement. The SYNONYM clause
documents all other synonymous entities for which an ADD was generated during the
run.

If a grouping statement identifying a nonunique name is used for a run, the DDDL
Generator generates an ADD statement for each unique entity referred to by the name
(instead of just for the first occurrence of the name).

Note that an ADD statement is always generated for the first occurrence of every file
or record name. If the name appears in a grouping statement for the run, an ADD
statement will be generated for the first occurrence of the name for each group
defined. Additionally, an ADD statement is generated for the first occurrence of the
name that is not described by any of the grouping statements.

Sample file of control statements: A file of control statements is illustrated
below. The parameter statement is first and specifies override processing options for
the run. Next, the VERSION statement specifies a VERSION clause to be added to
generated statements.The rest of file consists of grouping statements.

4-4 CA-IDMS Dictionary Loader

4.2 Overview

Output from the DDDL Generator: Output from the DDDL Generator consists of
a file of DDDL statements and a listing of the generated statements. For a breakdown
of the DDDL clauses generated for each entity type, refer to the table below.

Use the output file to populate the dictionary: The output file can be input to
the DDDL compiler to populate the data dictionary. Before being input to the com-
piler, this file can be edited. Editing considerations are presented later in this section.

Chapter 4. DDDL Generator 4-5

4.2 Overview

DDDL statement DDDL clauses

ADD FILE VERSION
LABELS ARE STANDARD/OMITTED
RECORD SIZE
RECORDING MODE
BLOCK SIZE
FILE NAME SYNONYM

ADD RECORD

(COBOL substatement)

VERSION
LANGUAGE
WITHIN FILE
RECORD NAME SYNONYM
level-n element-name
REDEFINES
OCCURS
OCCURS DEPENDING ON
ASCENDING/DESCENDING KEY
INDEXED BY (for one item)
PICTURE
VALUE
SIGN
BLANK WHEN ZERO
SYNCHRONIZED
JUSTIFIED RIGHT

ADD PROGRAM VERSION
LANGUAGE
ESTIMATED LINES
PROGRAM CALLED
INPUT/OUTPUT/I-O/EXTEND FILE
ENTRY POINT
RECORD USED REFERENCED/
 MODIFIED
ELEMENT REFERENCED/
 MODIFIED

4-6 CA-IDMS Dictionary Loader

4.3 Developing a File of Control Statements

4.3 Developing a File of Control Statements

Types of control statements: The DDDL Generator accepts three types of
optional control statements:

■ The parameter statement

■ The VERSION statement

■ The grouping statement

One or more parameter statements, a single VERSION statement, and one or more
grouping statements make up the control file.

Steps to develop a file: To develop a file of control statements, follow these
steps:

Step 1: Specify the processing options: See the table below and determine
whether the default processing options in effect are acceptable. Select any override
processing options needed for the run. Specify the override options with a parameter
statement. Note that options can be specified in OS/390 execution JCL by using the
PARM clause of the EXEC statement. For syntax and rules, see 4.4, “Parameter
Statement” on page 4-9 later in this chapter.

Step 2: Specify a VERSION statement: Determine whether VERSION 01 is the
appropriate clause to be added to generated DDDL statements. For considerations
relating to the use of the VERSION clause, refer to 4.8, “Editing Generated DDDL
Statements” on page 4-17 later in this chapter. Specify a VERSION statement, if
appropriate. For syntax and rules, see 4.5, “VERSION Statement” on page 4-11 later
in this chapter.

Parameter Default option Override option

LIBRARY/
NOLIBRARY

NOLIBRARY — Data usage
files are not to be read from a
library. The default DISK
(see below) must be taken
with NOLIBRARY.

LIBRARY — Data usage
files are to be read from a
partitioned data set (OS/390)
or source statement library
(VSE/ESA).

DISK/NODISK DISK — Data usage files are
to be read from a sequential
data set.

NODISK — Data usage
files are not to be read from
a partitioned data set
(OS/390) or source state-
ment library(VSE/ESA).

LIST/NOLIST LIST — The file of generated
DDDL statements is to be
listed.

NOLIST — The file of gen-
erated DDDL statements is
not to be listed.

Chapter 4. DDDL Generator 4-7

4.3 Developing a File of Control Statements

Step 3: Identify file and record names: Identify nonunique or synonymous file and
record names. Use the System Data Cross Reference Report and the Dictionary of
Data Names Report to research the use of entity names. Find multiple names for the
same file or record and instances when a single name is used to refer to different files
or records.

Step 4: Specify grouping statements: Using the information gathered in Step 3,
create the grouping statements necessary to ensure that an ADD statement will be gen-
erated for each unique entity and that SYNONYM clauses will be generated for ADD
statements that describe the same file or record using different entity-occurrence
names. See 4.6, “Grouping Statement” on page 4-12 and 4.7, “Using the Grouping
Statement” on page 4-14 later in this chapter.

4-8 CA-IDMS Dictionary Loader

4.4 Parameter Statement

 4.4 Parameter Statement

Purpose: The parameter statement specifies override processing options for the
DDDL generator. Under VSE/ESA, this statement must be used to specify options;
under OS/390, parameters can be specified in the execution JCL by using the PARM
clause of the EXEC statement.

Coding rules: The following rules apply to coding a parameter statement for the
DDDL Generator:

■ Parameter statements, if used, must be input first before the data usage files.

■ Multiple parameter statements can be entered.

■ Statements can be coded in positions 1 through 72.

■ Options can be specified in any order, with one or more options per statement and
at least one blank or comma between specifications.

 Syntax

��─┬────────────┬───�

├─ LISt ← ─┬─┘

└─ NOLISt ─┘

 >─┬───┬────────────────────�

 │ ┌─────────────────────────────────────┐ │

├─ LIBrary ─↓─ member-name ──┬──────────────────┬─┴─┬─┘

│ └─ = program-name ─┘ │

└─ NOLIBrary ← ─────────────────────────────────────┘

 >─┬────────────┬───��

├─ DISk ← ─┬─┘

└─ NODisk ─┘

 Parameter list

LISt/NOList
Specifies whether the file of generated DDDL statement is to be listed, as follows:

■ LIST (default) — The generated DDDL statements are to be listed.

■ NOLIST — The generated DDDL statements are not to be listed.

LIBrary/NOLIBrary
Specifies information about the data usage files to be input to the DDDL Gener-
ator, as follows:

■ LIBRARY — Identifies the data usage files. Each occurrence of member-
name identifies a data usage file. All files specifies must be members of the
same partitioned data set (OS/390) or source statement library (VSE/ESA).
The optional entry, program-name, can be specified for any member and
overrides the use of the specified member as the program ID on the generated
ADD PROGRAM syntax.

LIBRARY must always be specified with NODISK (see below) and must be
specified with DISK if data usage files are to be read from both sequential

Chapter 4. DDDL Generator 4-9

4.4 Parameter Statement

data sets and from a partitioned data set (OS/390) or a source statement
library (VSE/ESA).

■ NOLIBRARY — Specifies that data usage files are not to be read from a
partitioned data set (OS/390) or source statement library (VSE/ESA). If the
default of NOLIBRARY is taken, then the default of DISK (see below) must
also be taken.

DISk/NODisk
Are options used with LIBRARY/NOLIBRARY, as follows:

■ DISK (default) — Specifies that data usage files are to be read from a
sequential data set. DISK must always be specified with NOLIBRARY.
DISK can be specified with LIBRARY if the data usage files are to be read
from both sequential data set and from partitioned data set (OS/390) or source
statement library (VSE/ESA).

■ NODISK — specifies that data usage files are not to be read from a sequen-
tial data set. LIBRARY (see above) must be specified with NODISK if all of
the data usage files are stored in a partitioned data set (OS/390) or source
statement library (VSE/ESA).

4-10 CA-IDMS Dictionary Loader

4.5 VERSION Statement

 4.5 VERSION Statement

Purpose: The VERSION statement describes the VERSION clause to be added to
each generated DDDL statement. This statement is optional; if omitted, the DDDL
Generator automatically adds a VERSION 01 clause to each generated ADD statement.

 Syntax

��── VERsion ─┬─ NEXT HIGhest ───┬──��

├─ NEXT LOWest ────┤

├─ version-number ─┤

└─ 91 ← ───────────┘

 Parameter list

VERsion
Identifies the statement and specifies that the clause described is to be added to all
generated ADD PROGRAM, ADD FILE, and ADD RECORD statements.

NEXT HIGHest/NEXT LOWest
Specifies the version. Version-number, if specified, must be a 1- to 4-digit
number in the range 1 through 9999.

Chapter 4. DDDL Generator 4-11

4.6 Grouping Statement

 4.6 Grouping Statement

Purpose: Grouping statements uniquely identify to the DDDL Generator the file or
record definitions that have nonunique or synonymous names. Synonymous file (or
record) definitions describe the same file (or record) but are referred to by different
names. Nonunique file (or record) definitions have the same name but do not define
the same file (or record).

Coding rules: The following rules apply to coding the grouping statement:

■ The keyword identifier must begin in position 1.

■ Continuation lines must begin in position 2.

■ Grouping statements can be coded in positions 1 or 2 through 72.

■ One or more spaces must be included between entries in the statement.

■ Punctuation is not allowed.

■ Clauses can be specified on the same line as the keyword identifier or on subse-
quent lines.

■ Continuation must occur at a natural space between words.

 Syntax

 ┌──┐

 │ ┌───────────────────┐│

��─┬─ FILE-GROUPING ───┬─↓─┬─ file-name ───┬─↓─ IN program-name ─┴┴───────────��

└─ RECORD-GROUPING ─┘ └─ record-name ─┘

 Parameter list

FILE-GROUPING/RECORD-GROUPING
Identifies the statement as a grouping statement and specifies whether the state-
ment applies to files or records.

file-name/record name
Identifies the file or record to be grouped. The name must be specified exactly as
it appears in one or more of the programs being processed.

IN program-name
Specifies a program in which file-name or record-name appears. Program-name
must be the internal PROGRAM-ID or, if the LIBRARY parameter has been used
to rename the program, the member-name.

The entry IN program-name can be repeated (see note below) to name different
programs in which the specified file or record appears. Multiple specifications of
IN program-name for a single file or record name mean that the file or record
uses the same name and is identical in each of the programs named.

Additionally, the entire specification of file-name/record-name IN program-name can
be repeated (see note below). Multiple entities of this specification indicate file or
record synonyms. For example, the file name INPFILE in the program TRAN and file

4-12 CA-IDMS Dictionary Loader

4.6 Grouping Statement

name INPUT in program T2 both refer to the same file; INPFILE and INPUT are file
synonyms.

Note: Up to a total of five program names can be specified in a single grouping
statement. Each of the program names can be associated with different file or record
names (that is, by repeating the entire specification or file-name/record-name IN
program-name). Alternatively, multiple program names can be associated with the
same file or record (that is, by creating only the specification of IN program-name for
a single file or record).

Sample: The sample grouping statement shown below specifies the maximum allow-
able number of program names (that is, 5):

FILE-GROUPING INPFILE IN PROG1 IN PROG2 IN PROG3

 INPUT IN PROG4 TRANFILE IN PROG5

The names INPFILE, INPUT, and TRANFILE all refer to the same file, but these
names appear in different programs. INPFILE refers to the file in the programs
PROG1, PROG2, and PROG3; INPUT refers to the file in PROG4; TRANFILE refers
to the file in PROG5.

Chapter 4. DDDL Generator 4-13

4.7 Using the Grouping Statement

4.7 Using the Grouping Statement

Use to identify synonyms and nonunique file or record names: Use the
grouping statement to identify synonymous and nonunique file or record names to the
DDDL Generator:

■ Synonym names — Specify the appropriate keyword identifier
(FILE-GROUPING or RECORD-GROUPING). After the keyword identifier,
specify a file name (or record name) and its associated program name(s). Repeat
the specification of file name (record name) and program name(s) until all syno-
nyms have been identified in the grouping statement.

The statement shown below illustrates grouping for two file names that refer to
the same file: FILE-A names the file in PROG-1 and PROG-2, and FILE-B names
the file in PROG-3.

FILE-GROUPING FILE-A IN PROG-1 IN PROG-2 FILE-B IN PROG-3

Assuming the the data usage files are input in the order PROG-1, PROG-2, and
PROG-3, the DDDL Generator generates the following statements:

(Under PROG-1) ADD FILE FILE-A

FILE NAME SYNONYM IS FILE-B

(Under PROG-2) (No statements)

(Under PROG-3) ADD FILE FILE-B

FILE NAME SYNONYM IS FILE-A

Because a single name cannot be both the primary entity-occurrence name and a
synonym, these statements must be edited to designate one name as the primary
name and the other name for the file as a synonym For a complete discussion of
synonym usage, see IDD User Guide.

■ Nonunique name — Specify the appropriate keyword identifier
(FILE-GROUPING or RECORD-GROUPING), followed by the nonunique name
and an IN clause for each program in which the name is used to refer to the file
or record being grouped by that statement. Repeat this process for each different
file or record referred to by the nonunique name.

The statements shown below illustrate file grouping for the name FILE-A, where
FILE-A refers to one file in PROG-1 and PROG-2, and to another file in PROG-3
and PROG-4:

FILE-GROUPING FILE-A IN PROG-1 IN PROG-2

FILE-GROUPING FILE-A IN PROG-3 IN PROG4

Assuming that the data usage files are input in the order PROG-1 though PROG4,
the DDDL Generator generates the statements shown below:

(Under PROG-1) ADD FILE FILE-A

(Under PROG-2) (No statements)

(Under PROG-3) ADD FILE FILE-A

(Under PROG-4) (No statements)

The two generated ADD FILE FILE-A statements can then be edited to establish
different version numbers or to assign a different name to one of the files.

Note that multiple IN clauses cause the DDDL Generator to generate an ADD
statement for the first occurrence of the entity description for each group. For a
given name, one use of the name can be processed without grouping statement; to

4-14 CA-IDMS Dictionary Loader

4.7 Using the Grouping Statement

obtain an ADD statement for each distinct IDD entity description, each additional
use must be defined by a separate grouping statement.

If grouping statements are omitted, an ADD statement is generated for the first
occurrence of a file name or record name. If the file name or record name
appears again, no statement is generated; subsequent occurrences of the name are
considered to be duplicates.

Example 1: Five programs (PROG-1, PROG-2, PROG-3, PROG-4, PROG-5) are
being processed. All five programs access files named MASTER. The name
MASTER refers to one file for PROG-1 and PROG-2, to a second files for PROG-3
and PROG-4, and to a third file for PROG-5. The following grouping statements
ensure that ADD statements will be generated for each of the three unique files:

FILE-GROUPING MASTER IN PROG-1 IN PROG-2

FILE-GROUPING MASTER IN PROG-3 IN PROG-4

Note that PROG-5 in not mentioned in these statements; when the DDDL Generator
encounters the file name MASTER in PROG-5, it will treat the file as one of the
group of all unqualified (that is, not explicitly mentioned in a grouping statement) files
named MASTER and automatically generate an ADD statement.

Assuming that the data usage files are input in the order PROG-1 through PROG-5,
the DDDL Generator generates the statements shown below. Note that SYNONYM
clauses are not generated because all files have the same name.

(Under PROG-1) ADD FILE MASTER...

(Under PROG-2) (No statements)

(Under PROG-3) ADD FILE MASTER...

(Under PROG-4) (No statements)

(Under PROG-5) ADD FILE MASTER...

The three ADD statements that use the file name MASTER can be edited to assure
that the three distinct entities are entered into the dictionary. The statement can be
distinguished from one another by using different version numbers or by changing the
name MASTER for two of the three files.

Example 2: The file name SUM-FILE is used in five programs, PROG-1 through
PROG-5. The name SUM-FILE refers to the same file in all five programs but the
record description for the file is different in PROG-5. The following grouping state-
ment makes the distinction:

FILE-GROUPING SUM-FILE IN PROG-5

Assuming that the data usage files are input in the order PROG-1 through PROG-5,
the DDDL Generator generates the statements shown below:

(Under PROG-1) ADD FILE SUM-FILE...

(Under PROG-2) (No statements)

(Under PROG-3) (No statements)

(Under PROG-4) (No statements)

(Under PROG-5) ADD FILE SUM-FILE...

These statements can then be edited (that is, versions added or file names changed) to
assure that both entities will be added to the dictionary.

Chapter 4. DDDL Generator 4-15

4.7 Using the Grouping Statement

Example 3: The file names SUM-FILE in PROG-1 and SUMMARY-IN in PROG-2
both refer to the same file. Each file name has its own record descriptions. The
following statement expresses the proper grouping:

FILE-GROUPING SUM FILE IN PROG-1 SUMMARY-IN IN PROG-2

Assuming that the data usage files are input in the order PROG-1, PROG-2, the DDDL
Generator generates the statements shown below:

(Under PROG-1) ADD FILE SUM-FILE...

FILE NAME SYNONYM IS SUMMARY-IN

(Under PROG-2) ADD FILE SUMMARY-IN...

FILE NAME SYNONYM IS SUM-FILE

Because a single name cannot be both the primary entity-occurrence name and a
synonym, these statements must be edited to designate one name as the primary name
and all other names for the file as synonyms. For a complete discussion of synonym
usage, see IDD User Guide

Example 4: One file is named differently in four different programs. The file is
named ABC in PROG-1, DEF in PROG-2, GHI in PROG-3, and JKL in PROG-4.
The following grouping statement describes this situation:

FILE-GROUPING ABC IN PROG-1 DEF IN PROG-2 GHI IN PROG-3 JKL IN PROG-4

Assuming that the data usage files are input in the order PROG-1 through PROG-4,
the DDDL Generator generates the following statements:

(Under PROG-1) ADD FILE ABC...

FILE NAME SYNONYM IS DEF

FILE NAME SYNONYM IS GHI

FILE NAME SYNONYM IS JKL.

(Under PROG-2) ADD FILE DEF...

FILE NAME SYNONYM IS ABC

FILE NAME SYNONYM IS GHI

FILE NAME SYNONYM IS JKL.

(Under PROG-3) ADD FILE GHI...

FILE NAME SYNONYM IS ABC

FILE NAME SYNONYM IS DEF

FILE NAME SYNONYM IS JKL.

(Under PROG-4) ADD FILE JKL...

FILE NAME SYNONYM IS ABC

FILE NAME SYNONYM IS DEF

FILE NAME SYNONYM IS GHI.

These statements must be edited to establish one primary name for the file and to
designate all other names for the file as synonyms.

4-16 CA-IDMS Dictionary Loader

4.8 Editing Generated DDDL Statements

4.8 Editing Generated DDDL Statements

Edit before using as input to DDDL compiler: The output file of generated
DDDL statements produced by running the DDDL Generator should be edited before
being input to the DDDL compiler. This editing aids in maintaining control of the
information entered into the dictionary.

 Sample output

ADD FILE CUSTOMER-FILE VERSION NEXT HIGHEST

LABELS ARE OMITTED

RECORD SIZE IS 194

RECORDING MODE IS F

FILE NAME SYNONYM IS CUSTFILE VERSION NEXT HIGHEST.

ADD RECORD CUSTOMER VERSION NEXT HIGHEST

LANGUAGE IS COBOL

WITHIN FILE CUSTOMER-FILE VERSION HIGHEST

RECORD NAME SYNONYM IS CUST VERSION NEXT HIGHEST.

 93 CUST-NUMBER PIC X(19).

 93 CUST-NAME PIC X(29).

 93 CUST-ADDRESS.

 95 CUST-ADDR1 PIC X(29).

 95 CUST-ADDR2.

 96 CUST-CITY PIC X(15).

 96 CUST-ZIP-CODE PIC X(5).

96 CUST-ZIPCODE REDEFINES CUST-ZIP-CODE

 PIC 9(5).

 93 CUST-CREDIT PIC XXX.

 88 CUST-CREDIT-EXEC VALUE 'AAA'.

 88 CUST-CREDIT-GOOD VALUE ' '.

 88 CUST-CREDIT-POOR VALUE 'XXX'.

 93 CUST-SALES-INFO.

 95 CUST-SALES-QTR OCCURS 4.

96 CUST-NUM-SALES PIC 9(5) COMP-3.

96 CUST-AMT-SALES PIC S9(7) COMP-3.

 93 FILLER PIC XXX.

ADD FILE ORDER-FILE VERSION NEXT HIGHEST

LABELS ARE OMITTED

RECORD SIZE IS 59

RECORDING MODE IS F

BLOCK SIZE IS 5999.

Editing functions: You should perform the following editing functions, as needed:

Add comments: Add comments to the descriptions of programs, files, and records to
document the function and characteristics of each entity. Comments can be added
easily and in an organized way at this point in the process of populating the dictionary.

Eliminate unnecessary entities: Delete the ADD statement for any entity that
should not be a part of the dictionary. For example, report title records and report
detail records used within a single program generally should not be defined in the
dictionary. While important in the context of the specific program in which they are
used, such records do not have global applications and tend to clutter the dictionary.

Chapter 4. DDDL Generator 4-17

4.8 Editing Generated DDDL Statements

Reconcile nonunique names: If the DDDL output contains multiple ADD state-
ments for the same name, editing may be necessary to ensure that the desired entities
reach the dictionary when the ADD statements are processed by the DDDL compiler.
Note the following considerations:

■ If the multiple ADD statements are associated with the same explicit version
number (for example, VERSION 1) and no editing is performed, the DDDL com-
piler will process these statements in one of the following ways:

DEFAULT IS ON/OFF can be specified with the SET OPTIONS statement.

�� For more information about this option, see IDD DDDL Reference

■ If the multiple ADD statements are associated with a VERSION NEXT
HIGHEST/LOWEST and no editing is performed, all ADD statements will be
processed successfully; each occurrence of the name will be associated with a dif-
ferent version number.

In either case described above, the editing needed depends upon the objectives for the
dictionary. Version clauses can be changed, ADD statements can be deleted or com-
bined, or entity names can be changed (in the ADD statements and in the programs
that refer to the names).

Note that running the DDDL Generator with the version statement VERSION NEXT
HIGHEST and appropriate grouping statements assures that each entity occurrence
with a duplicate name will be added to the dictionary when the generated statements
are run through the DDDL compiler. Each repetition of the name will be associated
with a different version number; the version number uniquely identifies the entity
occurrence (for example, CUSTOMER record, version 1; CUSTOMER record, version
2; on so on). This technique should not be used to avoid the thoughtful evaluation of
the generated statements and the editing necessary to develop a well organized dic-
tionary.

Reconcile synonyms: Ideally, multiple ADD statements for synonymous file or
record descriptions should be merged into a single ADD statement. A single
description of a file or record should be entered in the dictionary. This means that all
descriptions should be examined and combined. A single name should be chosen for

If DEFAULT IS
ON

The DDDL compiler will process the first ADD statement
encountered for the nonunique name and change subsequent
ADDs to MODIFYs. This means that only the description
associated with the last ADD processed will be present in the
dictionary.

If DEFAULT IS
OFF

The DDDL compiler will process only the first ADD state-
ment that refers to the nonunique name and will flag as erro-
neous subsequent ADD statements for that name. This means
that only the description associated with the first ADD state-
ment processed will be present in the dictionary.

4-18 CA-IDMS Dictionary Loader

4.8 Editing Generated DDDL Statements

the entity and associated record and or element names reconciled (that is, one name
and description for the element customer name). Subsequently, all programs that use
the entity must be changed to use the reconciled entity-occurrence name and to use
any other associated reconciled names.

Alternatively, if record and element synonyms are desired, the generated DDDL state-
ments can be edited to include ELEMENT NAME SYNONYM FOR RECORD
NAME SYNONYM clauses.

��For additional information on element and record synonyms, refer to IDD DDDL
Reference

The reconciliation of synonyms is an important user responsibility in building an effec-
tive dictionary. Although the DDDL compiler accepts and processes multiple ADD
statements that essentially define the same entity under different names, the practice of
populating the dictionary with such synonymous entities is generally undesirable.

Chapter 4. DDDL Generator 4-19

4.9 Executing the DDDL Compiler

4.9 Executing the DDDL Compiler

JCL for executing the DDDL Generator under OS/390 and VSE/ESA is shown below.
Under VSE/ESA, processing options must be specified with the parameter statement.
Under OS/390, options can be specified either with the parameter statement or in the
PARM clause of the EXEC statement.

OS/390 JCL — PRANIDDG

//PRANIDDG EXEC PGM=PRANIDDG,REGION=1924K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SORTMSG DD SYSOUT=A

//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR

//SORTWK91 DD UNIT=disk,SPACE=(cyl,(5,5))

//SORTWK92 DD UNIT=disk,SPACE=(cyl,(5,5))

//SORTWK93 DD UNIT=disk,SPACE=(cyl,(5,5))

//PRANLIB DD DSN=reflib,DISP=SHR ← Include only if using LIBRARY option

//PRANREF DD DSN=sysref1,DISP=SHR ← Included only if using DISK option

// DD DSN=sysref2,DISP=SHR

 .

 .

 .

// DD DSN=sysrefn,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD @

//SYSOUT DD SYSOUT=A

//SYSIDMS DD @

dmcl=dmcl-name

Insert additional SYSIDMS parameters as appropriate

//SYSIPT DD @

Insert optional control statements

//SYSPCH DD DSN=dddlstmts,DISP=(NEW,catlg),

 SPACE=(trk,(19,19),rlse),UNIT=disk,

 VOL=SER=nnnnnn,DCB=BLKSIZE=blksize

4-20 CA-IDMS Dictionary Loader

4.9 Executing the DDDL Compiler

VSE/ESA JCL — PRANIDDG

// DLBL SLLn,'user.srclib'

// EXTENT ,nnnnnn

// LIBDEF SL,TO=SSLn,TEMP

// DLBL PRANREF,'sysref',,SD ← Include only if using DISK option

// EXTENT SYS919,nnnnnn

// ASSGN SYS919,DISK,VOL=nnnnnn,SHR

// DLBL SORTWK1,'WORK1',9,SD

// EXTENT SYS991,nnnnnn,1,,ssss,299

// ASSGN SYS991,DISK,VOL=nnnnnn,SHR

// DLBL IDMSPCH,'dddl statements',99/365,SD

// EXTENT SYS929,nnnnnn,1,,ssss,399

// ASSGN SYS929,DISK,VOL=nnnnnn,SHR

// EXEC PRANIDDG,SIZE=299K

optional control statements

/@

idms.dba.loadlib Data set name of the load library containing the DMCL
and database name table load modules

idms.loadlib Data set name of the load library containing CA-IDMS
system software modules

blksize block size of DDDL statement file (must be a multiple
of 80)

catlg disposition of new file: CATLG, PASS, or KEEP

cyl(5,5) file space allocation of work file

dddlstmts dataset name of file to contain DDDL statements

disk symbolic device name of disk file

nnnnnn serial number of disk volume

reflib data set name of partitioned data set containing data
usage files

sysref1 data set names of sequential data sets containing data
usage files

(trk,(19,19),rlse) space allocation for DDDL statement file

dcmsg DDname of the system message (DDLDCMSG) area

idms.sysmsg.ddldcmsg Data set name of the system message (DDLDCMSG)
area

SYSIDMS DDname of the CA-IDMS parameter file specifying
runtime directives and operating system-dependent
parameters.

��For a complete description of the SYSIDMS param-
eter file, see CA-IDMS Database Administration.

Chapter 4. DDDL Generator 4-21

4.9 Executing the DDDL Compiler

dddl statements file-id of the file to contain DDDL statements

nnnnnn serial number of disk volume

ssss stating track (CKD) or block (FBA) or disk extent

sysref file-id for sequential file containing data usage file

user.srclib source statement library containing data usage files

SSLn filename of source statement library

4-22 CA-IDMS Dictionary Loader

Appendix A. Sample COBOL Input and DDDL Output

A.1 About this Appendix . A-3

Appendix A. Sample COBOL Input and DDDL Output A-1

A-2 CA-IDMS Dictionary Loader

A.1 About this Appendix

A.1 About this Appendix

This appendix shows sample input to and output from the Dictionary Loader, as
follows:

■ Input to the Program Processor — Three COBOL source programs

■ Input to the DDDL Generator — The control statements used in running the
DDDL Generator

■ Output from the DDDL Generator — The DDDL statements generated by proc-
essing the data usage files associated with the three COBOL programs

Note that the other examples (that is, example reports) shown throughout this manual
are all taken from the Dictionary Loader runs made to process the three programs
listed below.

Sample COBOL programs

991999 ID DIVISION.

992999 PROGRAM-ID. PRANDEM1.

993999 AUTHOR. COMPUTER ASSOCIATES INTERNATIONAL, INC.

994999 REMARKS. SAMPLE PROGRAM CONTAINING FILES

995999 CUSTOMER-FILE, ORDER-FILE, AND RPTFILE.

996999 CUSTOMER-FILE AND ORDER-FILE HAVE BEEN

997999 SORTED ON CUSTOMER NUMBER. THIS

998999 PROGRAM MATCHES ORDERS TO THE CUSTOMER

999999 AND PRODUCES A REPORT OF ALL ORDERS

919999 FOR ALL CUSTOMERS.

911999

912999 ENVIRONMENT DIVISION.

913999 INPUT-OUTPUT SECTION.

914999 FILE-CONTROL.

915999 SELECT CUSTOMER-FILE ASSIGN UT-2499-S-CUSTIN.

916999 SELECT ORDER-FILE ASSIGN UT-2499-S-ORDERIN.

917999 SELECT RPTFILE ASSIGN UT-S-SYSLST.

918999

919999 DATA DIVISION.

929999 FILE SECTION.

921999 FD RPTFILE

922999 RECORDING MODE F

923999 LABEL RECORDS ARE OMITTED

924999 RECORD CONTAINS 133

925999 DATA RECORDS ARE TITLE-REC DETAIL-REC.

926999

Appendix A. Sample COBOL Input and DDDL Output A-3

A.1 About this Appendix

927999 91 TITLE-REC PIC X(133).

928999 91 DETAIL-REC.

929999 95 FILLER PIC X.

939999 95 RPT-CUST-NO PIC X(19).

931999 95 FILLER PIC XXX.

932999 95 RPT-NAME PIC X(29).

933999 95 FILLER PIC X(5).

934999 95 RPT-ORD-IDENT.

935999 19 RPT-ORD PIC X(7).

936999 19 FILLER PIC XXX.

937999 95 RPT-DATE-REQ PIC X(8).

938999 95 FILLER PIC X(76).

939999

949999 FD CUSTOMER-FILE

941999 RECORDING MODE F

942999 LABEL RECORDS ARE OMITTED

943999 RECORD CONTAINS 194 CHARACTERS

944999 DATA RECORD IS CUSTOMER.

945999

946999 91 CUSTOMER.

947999 93 CUST-NUMBER PIC X(19).

948999 93 CUST-NAME PIC X(29).

949999 93 CUST-ADDRESS.

959999 95 CUST-ADDR1 PIC X(29).

951999 95 CUST-ADDR2.

952999 96 CUST-CITY PIC X(15).

953999 96 CUST-ZIP-CODE PIC X(5).

954999 96 CUST-ZIPCODE REDEFINES CUST-ZIP-CODE

955999 PIC 9(5).

956999 93 CUST-CREDIT PIC XXX.

957999 88 CUST-CREDIT-EXEC VALUE IS 'AAA'.

958999 88 CUST-CREDIT-GOOD VALUE IS ' '.

959999 88 CUST-CREDIT-POOR VALUE IS 'XXX'.

969999 93 CUST-SALES-INFO.

961999 95 CUST-SALES-QTR OCCURS 4 TIMES.

962999 96 CUST-NUM-SALES PIC 9(5) COMP-3.

963999 96 CUST-AMT-SALES PIC S9(7) COMP-3.

964999 93 FILLER PIC XXX.

965999

966999

967999 FD ORDER-FILE

968999 RECORDING MODE F

969999 LABEL RECORDS ARE OMITTED

979999 RECORD CONTAINS 59 CHARACTERS

971999 BLOCK CONTAINS 199 RECORDS

972999 DATA RECORD IS ORDOR.

973999

A-4 CA-IDMS Dictionary Loader

A.1 About this Appendix

974999 91 ORDOR.

975999 93 ORD-CUST-NUMBER PIC X(19).

976999 93 ORD-NUMBER PIC X(7).

977999 93 ORD-CUST-PO-NUMB PIC X(19).

978999 93 ORD-DATES.

979999 95 ORD-REQ-DATE PIC X(6).

989999 95 ORD-DATE-REQ REDEFINES ORD-REQ-DATE

981999 PIC 9(6).

982999 95 ORD-PROM-DATE PIC X(6).

983999 95 ORD-DATE-PROM REDEFINES ORD-PROM-DATE

984999 PIC 9(6).

985999 95 ORD-SHIPPED-DATE PIC X(6).

986999 95 ORD-DATE-SHIPPED REDEFINES ORD-SHIPPED-DATE

987999 PIC 9(6).

988999 93 ORD-SHIP-CODE PIC XX.

989999 88 ORD-SHIP-ALL VALUE IS 'AS'.

999999 88 ORD-SHIP-PART VALUE IS 'PS'.

991999 93 FILLER PIC XXX.

992999

993999

994999 WORKING-STORAGE SECTION.

995999

996999 91 PAGE-COUNT-WS PIC S99 VALUE +9.

997999 91 POSITION-IND-WS PIC X.

998999 91 PAGE-INCREMENT-WS PIC 9.

999999

199999 91 DATE-AS-INPUT-WS.

191999 95 INPUT-YY-WS PIC 99.

192999 95 INPUT-MM-WS PIC 99.

193999 95 INPUT-DD-WS PIC 99.

194999 91 DATE-FORMATTED-WS.

195999 95 FORMATTED-MM-WS PIC 99.

196999 95 FILLER PIC X VALUE '/'.

197999 95 FORMATTED-DD-WS PIC 99.

198999 95 FILLER PIC X VALUE '/'.

199999 95 FORMATTED-YY-WS PIC 99.

119999

111999 91 TITLE-1-WS.

112999 95 FILLER PIC X(52) VALUE SPACES.

113999 95 FILLER PIC X(29) VALUE

114999 'ORDER INFORMATION BY CUSTOMER'.

115999 95 FILLER PIC X(52) VALUE SPACES.

116999 91 TITLE-2-WS.

117999 95 FILLER PIC X(18) VALUE ' CUSTOMER NO '.

118999 95 FILLER PIC X(22) VALUE 'CUSTOMER NAME '.

119999 95 FILLER PIC X(9) VALUE 'ORDER '.

129999 95 FILLER PIC X(12) VALUE 'DATE REQ '.

121999 95 FILLER PIC X(72) VALUE SPACES.

122999

123999

124999 PROCEDURE DIVISION.

125999

126999 9199-HOUSEKEEPING.

127999 OPEN INPUT CUSTOMER-FILE.

128999 OPEN INPUT ORDER-FILE.

129999 OPEN OUTPUT RPTFILE.

139999 MOVE SPACES TO DETAIL-REC.

131999 MOVE SPACES TO CUST-NUMBER.

132999

Appendix A. Sample COBOL Input and DDDL Output A-5

A.1 About this Appendix

133999 9299-GET-ORDER-INFO.

134999 READ ORDER-FILE RECORD

135999 AT END GO TO 9299-EOJ.

136999

137999 9399-GET-CUST-INFO.

138999 IF ORD-CUST-NUMBER = CUST-NUMBER

139999 GO TO 9599-GET-ORDER-INFO.

149999

141999 READ CUSTOMER-FILE RECORD

142999 AT END GO TO 9299-EOJ.

143999

144999 MOVE CUST-NUMBER TO RPT-CUST-NO.

145999 MOVE CUST-NAME TO RPT-NAME.

146999

147999 9599-GET-ORDER-INFO.

148999 MOVE ORD-NUMBER TO RPT-ORD.

149999 MOVE ORD-DATE-REQ TO DATE-AS-INPUT-WS.

159999 MOVE INPUT-YY-WS TO FORMATTED-YY-WS.

151999 MOVE INPUT-MM-WS TO FORMATTED-MM-WS.

152999 MOVE INPUT-DD-WS TO FORMATTED-DD-WS.

153999 MOVE DATE-FORMATTED-WS TO RPT-DATE-REQ.

154999

155999 PERFORM 9999-WRITE THRU 9919-EXIT.

156999 GO TO 9399-GET-CUST-INFO.

157999

158999@ THIS PARAGRAPH CAUSES A REPORT FILE RECORD TO BE WRITTEN.

159999@ IT CONTROLS SPACING AND PAGING OF THE REPORT.

169999

161999 9999-WRITE.

162999 MOVE ' ' TO POSITION-IND-WS.

163999 MOVE 1 TO PAGE-INCREMENT-WS.

164999 IF RPT-ORD NOT = SPACES MOVE '9' TO POSITION-IND-WS

165999 MOVE 2 TO PAGE-INCREMENT-WS.

166999 IF RPT-CUST-NO NOT = SPACES MOVE '-' TO POSITION-IND-WS

167999 MOVE 3 TO PAGE-INCREMENT-WS.

168999 WRITE DETAIL-REC AFTER POSITIONING POSITION-IND-WS.

169999 MOVE SPACES TO DETAIL-REC.

179999 ADD PAGE-INCREMENT-WS TO PAGE-COUNT-WS.

171999 IF PAGE-COUNT-WS GREATER THAN +58

172999 PERFORM 9199-NEW-PAGE THRU 9119-EXIT.

173999 9919-EXIT.

174999 EXIT.

175999

176999 9199-NEW-PAGE.

177999 WRITE TITLE-REC FROM TITLE-1-WS AFTER POSITIONING 9.

178999 MOVE SPACES TO TITLE-REC.

179999 WRITE TITLE-REC FROM TITLE-2-WS AFTER POSITIONING 3.

189999 MOVE SPACES TO TITLE-REC.

181999 MOVE +4 TO PAGE-COUNT-WS.

182999 9119-EXIT.

183999 EXIT.

184999

185999@ CLOSE THE FILES AND EXIT FROM THE PROGRAM.

186999

A-6 CA-IDMS Dictionary Loader

A.1 About this Appendix

187999 9299-EOJ.

188999 CLOSE CUSTOMER-FILE.

189999 CLOSE ORDER-FILE.

199999 CLOSE RPTFILE.

191999 9219-EXIT.

192999 STOP RUN.

193999

991999 ID DIVISION.

992999 PROGRAM-ID. PRANDEM2.

993999 AUTHOR. COMPUTER ASSOCIATES INTERNATIONAL, INC.

994999 REMARKS. SAMPLE PROGRAM CONTAINING FILE

995999 CUSTOMER-FILE. THIS PROGRAM PRODUCES

996999 A REPORT OF ALL CUSTOMERS WITH A

997999 CREDIT RATING OF EXCELLENT.

998999

999999 ENVIRONMENT DIVISION.

919999 INPUT-OUTPUT SECTION.

911999 FILE-CONTROL.

912999 SELECT CUSTOMER-FILE ASSIGN UT-2499-S-CUSTIN.

913999 SELECT RPTFILE ASSIGN UT-S-SYSLST.

914999

915999 DATA DIVISION.

916999 FILE SECTION.

917999 FD RPTFILE

918999 RECORDING MODE F

919999 LABEL RECORDS ARE OMITTED

929999 RECORD CONTAINS 133

921999 DATA RECORDS ARE TITLE-REC DETAIL-REC.

922999

923999 91 TITLE-REC PIC X(133).

924999 91 DETAIL-REC.

925999 95 FILLER PIC X.

926999 95 RPT-CUST-NO PIC X(19).

927999 95 FILLER PIC XXX.

928999 95 RPT-CUST-NAME PIC X(29).

929999 95 FILLER PIC X(19).

939999 95 RPT-ADDR1 PIC X(29).

931999 95 FILLER PIC X(5).

932999 95 RPT-ADDR2 PIC X(29).

933999 95 FILLER PIC X(5).

934999 95 RPT-ZIP PIC X(29).

935999 95 FILLER PIC X(19).

936999

937999 FD CUSTOMER-FILE

938999 RECORDING MODE F

939999 LABEL RECORDS ARE OMITTED

949999 RECORD CONTAINS 194 CHARACTERS

941999 DATA RECORD IS CUSTOMER.

942999

943999 91 CUSTOMER.

944999 93 CUST-NUM PIC X(19).

945999 93 CUST-NAME PIC X(29).

946999 93 CUST-ADDRESS.

947999 95 CUST-ADDR1 PIC X(29).

948999 95 CUST-ADDR2.

949999 96 CUST-CITY PIC X(15).

959999 96 CUST-ZIP-CODE PIC X(5).

951999 93 CUST-CREDIT PIC XXX.

952999 88 CUST-CREDIT-EXEC VALUE IS 'AAA'.

Appendix A. Sample COBOL Input and DDDL Output A-7

A.1 About this Appendix

953999 88 CUST-CREDIT-GOOD VALUE IS ' '.

954999 88 CUST-CREDIT-POOR VALUE IS 'XXX'.

955999 93 FILLER PIC X(31).

956999

957999

958999 WORKING-STORAGE SECTION.

959999

969999 91 PAGE-COUNT-WS PIC S99 VALUE +9.

961999 91 POSITION-IND-WS PIC X.

962999 91 PAGE-INCREMENT-WS PIC 9.

963999

964999 91 TITLE-1-WS.

965999 95 FILLER PIC X(46) VALUE SPACES.

966999 95 FILLER PIC X(41) VALUE

967999 'CUSTOMERS WITH AN EXCELLENT CREDIT RATING'.

968999 95 FILLER PIC X(46) VALUE SPACES.

969999 91 TITLE-2-WS.

979999 95 FILLER PIC X(18) VALUE ' CUSTOMER NO '.

971999 95 FILLER PIC X(22) VALUE 'CUSTOMER NAME '.

972999 95 FILLER PIC X(5) VALUE SPACES.

973999 95 FILLER PIC X(9) VALUE 'ADDRESS '.

974999 95 FILLER PIC X(79) VALUE SPACES.

975999

976999

977999 PROCEDURE DIVISION.

978999

979999 OPEN INPUT CUSTOMER-FILE.

989999 OPEN OUTPUT RPTFILE.

981999 MOVE SPACES TO DETAIL-REC.

982999

983999 9399-GET-CUST-INFO.

984999 READ CUSTOMER-FILE RECORD

985999 AT END GO TO 9299-EOJ.

986999

987999 IF NOT CUST-CREDIT-EXEC GO TO 9399-GET-CUST-INFO.

988999

989999

999999 MOVE CUST-NUM TO RPT-CUST-NO.

991999 MOVE CUST-NAME TO RPT-CUST-NAME.

992999 MOVE CUST-ADDR1 TO RPT-ADDR1.

993999 MOVE CUST-ADDR2 TO RPT-ADDR2.

994999 MOVE CUST-ZIP-CODE TO RPT-ZIP.

995999

996999 PERFORM 9999-WRITE THRU 9919-EXIT.

997999 GO TO 9399-GET-CUST-INFO.

998999

999999@ THIS PARAGRAPH CAUSES A REPORT FILE RECORD TO BE WRITTEN.

199999@ IT CONTROLS SPACING AND PAGING OF THE REPORT.

191999

192999 9999-WRITE.

193999 MOVE ' ' TO POSITION-IND-WS.

194999 MOVE 1 TO PAGE-INCREMENT-WS.

195999 WRITE DETAIL-REC AFTER POSITIONING POSITION-IND-WS.

196999 MOVE SPACES TO DETAIL-REC.

197999 ADD PAGE-INCREMENT-WS TO PAGE-COUNT-WS.

198999 IF PAGE-COUNT-WS GREATER THAN +58

199999 PERFORM 9199-NEW-PAGE THRU 9119-EXIT.

119999 9919-EXIT.

111999 EXIT.

A-8 CA-IDMS Dictionary Loader

A.1 About this Appendix

112999

113999 9199-NEW-PAGE.

114999 WRITE TITLE-REC FROM TITLE-1-WS AFTER POSITIONING 9.

115999 MOVE SPACES TO TITLE-REC.

116999 WRITE TITLE-REC FROM TITLE-2-WS AFTER POSITIONING 3.

117999 MOVE SPACES TO TITLE-REC.

118999 MOVE +4 TO PAGE-COUNT-WS.

119999 9119-EXIT.

129999 EXIT.

121999

122999@ CLOSE THE FILES AND EXIT FROM THE PROGRAM.

123999

124999 9299-EOJ.

125999 CLOSE CUSTOMER-FILE.

126999 CLOSE RPTFILE.

127999 9219-EXIT.

128999 STOP RUN.

129999

991999 ID DIVISION.

992999 PROGRAM-ID. PRANDEM2.

993999 AUTHOR. COMPUTER ASSOCIATES INTERNATIONAL, INC.

994999 REMARKS. SAMPLE PROGRAM CONTAINING FILE

995999 CUSTOMER-FILE. THIS PROGRAM PRODUCES

996999 A REPORT OF ALL CUSTOMERS WITH A

997999 CREDIT RATING OF EXCELLENT.

998999

999999 ENVIRONMENT DIVISION.

919999 INPUT-OUTPUT SECTION.

911999 FILE-CONTROL.

912999 SELECT CUSTOMER-FILE ASSIGN UT-2499-S-CUSTIN.

913999 SELECT RPTFILE ASSIGN UT-S-SYSLST.

914999

915999 DATA DIVISION.

916999 FILE SECTION.

917999 FD RPTFILE

918999 RECORDING MODE F

919999 LABEL RECORDS ARE OMITTED

929999 RECORD CONTAINS 133

921999 DATA RECORDS ARE TITLE-REC DETAIL-REC.

922999

923999 91 TITLE-REC PIC X(133).

924999 91 DETAIL-REC.

925999 95 FILLER PIC X.

926999 95 RPT-CUST-NO PIC X(19).

927999 95 FILLER PIC XXX.

928999 95 RPT-CUST-NAME PIC X(29).

929999 95 FILLER PIC X(19).

939999 95 RPT-ADDR1 PIC X(29).

931999 95 FILLER PIC X(5).

932999 95 RPT-ADDR2 PIC X(29).

933999 95 FILLER PIC X(5).

934999 95 RPT-ZIP PIC X(29).

935999 95 FILLER PIC X(19).

936999

937999 FD CUSTOMER-FILE

938999 RECORDING MODE F

939999 LABEL RECORDS ARE OMITTED

949999 RECORD CONTAINS 194 CHARACTERS

941999 DATA RECORD IS CUSTOMER.

Appendix A. Sample COBOL Input and DDDL Output A-9

A.1 About this Appendix

942999

943999 91 CUSTOMER.

944999 93 CUST-NUM PIC X(19).

945999 93 CUST-NAME PIC X(29).

946999 93 CUST-ADDRESS.

947999 95 CUST-ADDR1 PIC X(29).

948999 95 CUST-ADDR2.

949999 96 CUST-CITY PIC X(15).

959999 96 CUST-ZIP-CODE PIC X(5).

951999 93 CUST-CREDIT PIC XXX.

952999 88 CUST-CREDIT-EXEC VALUE IS 'AAA'.

953999 88 CUST-CREDIT-GOOD VALUE IS ' '.

954999 88 CUST-CREDIT-POOR VALUE IS 'XXX'.

955999 93 FILLER PIC X(31).

956999

957999

958999 WORKING-STORAGE SECTION.

959999

969999 91 PAGE-COUNT-WS PIC S99 VALUE +9.

961999 91 POSITION-IND-WS PIC X.

962999 91 PAGE-INCREMENT-WS PIC 9.

963999

964999 91 TITLE-1-WS.

965999 95 FILLER PIC X(46) VALUE SPACES.

966999 95 FILLER PIC X(41) VALUE

967999 'CUSTOMERS WITH AN EXCELLENT CREDIT RATING'.

968999 95 FILLER PIC X(46) VALUE SPACES.

969999 91 TITLE-2-WS.

979999 95 FILLER PIC X(18) VALUE ' CUSTOMER NO '.

971999 95 FILLER PIC X(22) VALUE 'CUSTOMER NAME '.

972999 95 FILLER PIC X(5) VALUE SPACES.

973999 95 FILLER PIC X(9) VALUE 'ADDRESS '.

974999 95 FILLER PIC X(79) VALUE SPACES.

975999

976999

977999 PROCEDURE DIVISION.

978999

979999 OPEN INPUT CUSTOMER-FILE.

989999 OPEN OUTPUT RPTFILE.

981999 MOVE SPACES TO DETAIL-REC.

982999

983999 9399-GET-CUST-INFO.

984999 READ CUSTOMER-FILE RECORD

985999 AT END GO TO 9299-EOJ.

986999

987999 IF NOT CUST-CREDIT-EXEC GO TO 9399-GET-CUST-INFO.

988999

989999

999999 MOVE CUST-NUM TO RPT-CUST-NO.

991999 MOVE CUST-NAME TO RPT-CUST-NAME.

992999 MOVE CUST-ADDR1 TO RPT-ADDR1.

993999 MOVE CUST-ADDR2 TO RPT-ADDR2.

994999 MOVE CUST-ZIP-CODE TO RPT-ZIP.

995999

996999 PERFORM 9999-WRITE THRU 9919-EXIT.

997999 GO TO 9399-GET-CUST-INFO.

A-10 CA-IDMS Dictionary Loader

A.1 About this Appendix

998999

999999@ THIS PARAGRAPH CAUSES A REPORT FILE RECORD TO BE WRITTEN.

199999@ IT CONTROLS SPACING AND PAGING OF THE REPORT.

191999

192999 9999-WRITE.

193999 MOVE ' ' TO POSITION-IND-WS.

194999 MOVE 1 TO PAGE-INCREMENT-WS.

195999 WRITE DETAIL-REC AFTER POSITIONING POSITION-IND-WS.

196999 MOVE SPACES TO DETAIL-REC.

197999 ADD PAGE-INCREMENT-WS TO PAGE-COUNT-WS.

198999 IF PAGE-COUNT-WS GREATER THAN +58

199999 PERFORM 9199-NEW-PAGE THRU 9119-EXIT.

119999 9919-EXIT.

111999 EXIT.

112999

113999 9199-NEW-PAGE.

114999 WRITE TITLE-REC FROM TITLE-1-WS AFTER POSITIONING 9.

115999 MOVE SPACES TO TITLE-REC.

116999 WRITE TITLE-REC FROM TITLE-2-WS AFTER POSITIONING 3.

117999 MOVE SPACES TO TITLE-REC.

118999 MOVE +4 TO PAGE-COUNT-WS.

119999 9119-EXIT.

129999 EXIT.

121999

122999@ CLOSE THE FILES AND EXIT FROM THE PROGRAM.

123999

124999 9299-EOJ.

125999 CLOSE CUSTOMER-FILE.

126999 CLOSE RPTFILE.

127999 9219-EXIT.

128999 STOP RUN.

129999

Sample control statements for the DDDL Generator

VERSION NEXT HIGHEST

 FILE-GROUPING CUSTOMER-FILE IN PRANDEM1 IN PRANDEM2

CUSTFILE IN PRANDEM3

RECORD-GROUPING CUSTOMER IN PRANDEM1 IN PRANDEM2

 CUST IN PRANDEM3

Sample generated DDDL statements

Appendix A. Sample COBOL Input and DDDL Output A-11

A.1 About this Appendix

ADD FILE CUSTOMER-FILE VERSION NEXT HIGHEST

LABELS ARE OMITTED

RECORD SIZE IS 194

RECORDING MODE IS F

FILE NAME SYNONYM IS CUSTFILE VERSION NEXT HIGHEST.

ADD RECORD CUSTOMER VERSION NEXT HIGHEST

LANGUAGE IS COBOL

WITHIN FILE CUSTOMER-FILE VERSION HIGHEST

RECORD NAME SYNONYM IS CUST VERSION NEXT HIGHEST.

 93 CUST-NUMBER PIC X(19).

 93 CUST-NAME PIC X(29).

 93 CUST-ADDRESS.

95 CUST-ADDR1 PIC X(29).

 95 CUST-ADDR2.

 96 CUST-CITY

 PIC X(15).

 96 CUST-ZIP-CODE

 PIC X(5).

 96 CUST-ZIPCODE

 REDEFINES CUST-ZIP-CODE

 PIC 9(5).

 93 CUST-CREDIT PIC XXX.

 88 CUST-CREDIT-EXEC

 VALUE 'AAA'.

 88 CUST-CREDIT-GOOD

 VALUE ' '.

 88 CUST-CREDIT-POOR

 VALUE 'XXX'.

 93 CUST-SALES-INFO.

 95 CUST-SALES-QTR

 OCCURS 4.

 96 CUST-NUM-SALES

PIC 9(5) COMP-3.

 96 CUST-AMT-SALES

PIC S9(7) COMP-3.

 93 FILLER PIC XXX.

ADD FILE ORDER-FILE VERSION NEXT HIGHEST

LABELS ARE OMITTED

RECORD SIZE IS 59

RECORDING MODE IS F

BLOCK SIZE IS 5999.

ADD RECORD ORDOR VERSION NEXT HIGHEST

LANGUAGE IS COBOL

WITHIN FILE ORDER-FILE VERSION HIGHEST.

 93 ORD-CUST-NUMBER

 PIC X(19).

A-12 CA-IDMS Dictionary Loader

A.1 About this Appendix

 93 ORD-NUMBER PIC X(7).

 93 ORD-CUST-PO-NUMB

 PIC X(19).

 93 ORD-DATES.

 95 ORD-REQ-DATE

 PIC X(6).

 95 ORD-DATE-REQ

 REDEFINES ORD-REQ-DATE

 PIC 9(6).

 95 ORD-PROM-DATE

 PIC X(6).

 95 ORD-DATE-PROM

 REDEFINES ORD-PROM-DATE

 PIC 9(6).

 95 ORD-SHIPPED-DATE

 PIC X(6).

 95 ORD-DATE-SHIPPED

 REDEFINES ORD-SHIPPED-DATE

 PIC 9(6).

93 ORD-SHIP-CODE PIC XX.

 88 ORD-SHIP-ALL

 VALUE 'AS'.

 88 ORD-SHIP-PART

 VALUE 'PS'.

 93 FILLER PIC XXX.

ADD FILE RPTFILE VERSION NEXT HIGHEST

LABELS ARE OMITTED

RECORD SIZE IS 133

RECORDING MODE IS F.

ADD RECORD TITLE-REC VERSION NEXT HIGHEST

LANGUAGE IS COBOL

WITHIN FILE RPTFILE VERSION HIGHEST.

 92 TITLE-REC PIC X(133).

ADD RECORD DETAIL-REC VERSION NEXT HIGHEST

LANGUAGE IS COBOL

WITHIN FILE RPTFILE VERSION HIGHEST.

 95 FILLER PIC X.

 95 RPT-CUST-NO PIC X(19).

 95 FILLER PIC XXX.

 95 RPT-NAME PIC X(29).

 95 FILLER PIC X(5).

 95 RPT-ORD-IDENT.

 19 RPT-ORD PIC X(7).

 19 FILLER PIC XXX.

 95 RPT-DATE-REQ PIC X(8).

 95 FILLER PIC X(76).

ADD RECORD PAGE-COUNT-WS VERSION NEXT HIGHEST

LANGUAGE IS COBOL.

92 PAGE-COUNT-WS PIC S99

 VALUE +9.

ADD RECORD POSITION-IND-WS VERSION NEXT HIGHEST

LANGUAGE IS COBOL.

 92 POSITION-IND-WS

 PIC X.

Appendix A. Sample COBOL Input and DDDL Output A-13

A.1 About this Appendix

ADD RECORD PAGE-INCREMENT-WS VERSION NEXT HIGHEST

LANGUAGE IS COBOL.

 92 PAGE-INCREMENT-WS

 PIC 9.

ADD RECORD DATE-AS-INPUT-WS VERSION NEXT HIGHEST

LANGUAGE IS COBOL.

 95 INPUT-YY-WS PIC 99.

 95 INPUT-MM-WS PIC 99.

 95 INPUT-DD-WS PIC 99.

ADD RECORD DATE-FORMATTED-WS VERSION NEXT HIGHEST

LANGUAGE IS COBOL.

 95 FORMATTED-MM-WS

 PIC 99.

 95 FILLER PIC X

 VALUE '/'.

 95 FORMATTED-DD-WS

 PIC 99.

 95 FILLER PIC X

 VALUE '/'.

 95 FORMATTED-YY-WS

 PIC 99.

ADD RECORD TITLE-1-WS VERSION NEXT HIGHEST

LANGUAGE IS COBOL.

 95 FILLER PIC X(52)

 VALUE SPACES.

 95 FILLER PIC X(29)

 VALUE

'ORDER INFORMATION BY CUSTOMER'.

 95 FILLER PIC X(52)

 VALUE SPACES.

ADD RECORD TITLE-2-WS VERSION NEXT HIGHEST

LANGUAGE IS COBOL.

 95 FILLER PIC X(18)

VALUE ' CUSTOMER NO '.

 95 FILLER PIC X(22)

VALUE 'CUSTOMER NAME '.

 95 FILLER PIC X(9)

 VALUE 'ORDER '.

 95 FILLER PIC X(12)

VALUE 'DATE REQ '.

 95 FILLER PIC X(72)

 VALUE SPACES.

ADD PROGRAM PRANDEM1 VERSION NEXT HIGHEST

LANGUAGE IS COBOL

ESTIMATED LINES ARE 195

INPUT FILE IS CUSTOMER-FILE VERSION HIGHEST

INPUT FILE IS ORDER-FILE VERSION HIGHEST

OUTPUT FILE IS RPTFILE VERSION HIGHEST

RECORD USED IS CUSTOMER VERSION HIGHEST

ELEMENT IS CUST-NUMBER

REFERENCED 2 TIMES

MODIFIED 1 TIME

ELEMENT IS CUST-NAME

A-14 CA-IDMS Dictionary Loader

A.1 About this Appendix

REFERENCED 1 TIME

ELEMENT IS CUST-ADDRESS

ELEMENT IS CUST-ADDR1

ELEMENT IS CUST-ADDR2

ELEMENT IS CUST-CITY

ELEMENT IS CUST-ZIP-CODE

ELEMENT IS CUST-ZIPCODE

ELEMENT IS CUST-CREDIT

ELEMENT IS CUST-SALES-INFO

ELEMENT IS CUST-SALES-QTR

ELEMENT IS CUST-NUM-SALES

ELEMENT IS CUST-AMT-SALES

RECORD USED IS ORDOR VERSION HIGHEST

ELEMENT IS ORD-CUST-NUMBER

REFERENCED 1 TIME

ELEMENT IS ORD-NUMBER

REFERENCED 1 TIME

ELEMENT IS ORD-CUST-PO-NUMB

ELEMENT IS ORD-DATES

ELEMENT IS ORD-REQ-DATE

ELEMENT IS ORD-DATE-REQ

REFERENCED 1 TIME

ELEMENT IS ORD-PROM-DATE

ELEMENT IS ORD-DATE-PROM

ELEMENT IS ORD-SHIPPED-DATE

ELEMENT IS ORD-DATE-SHIPPED

ELEMENT IS ORD-SHIP-CODE

RECORD USED IS TITLE-REC VERSION HIGHEST

MODIFIED 4 TIMES

RECORD USED IS DETAIL-REC VERSION HIGHEST

MODIFIED 3 TIMES

ELEMENT IS RPT-CUST-NO

REFERENCED 1 TIME

MODIFIED 1 TIME

ELEMENT IS RPT-NAME

MODIFIED 1 TIME

ELEMENT IS RPT-ORD-IDENT

ELEMENT IS RPT-ORD

REFERENCED 1 TIME

MODIFIED 1 TIME

ELEMENT IS RPT-DATE-REQ

MODIFIED 1 TIME

RECORD USED IS PAGE-COUNT-WS VERSION HIGHEST

REFERENCED 1 TIME

MODIFIED 2 TIMES

RECORD USED IS POSITION-IND-WS VERSION HIGHEST

REFERENCED 1 TIME

MODIFIED 3 TIMES

RECORD USED IS PAGE-INCREMENT-WS VERSION HIGHEST

REFERENCED 1 TIME

MODIFIED 3 TIMES

RECORD USED IS DATE-AS-INPUT-WS VERSION HIGHEST

MODIFIED 1 TIME

ELEMENT IS INPUT-YY-WS

REFERENCED 1 TIME

ELEMENT IS INPUT-MM-WS

Appendix A. Sample COBOL Input and DDDL Output A-15

A.1 About this Appendix

REFERENCED 1 TIME

ELEMENT IS INPUT-DD-WS

REFERENCED 1 TIME

RECORD USED IS DATE-FORMATTED-WS VERSION HIGHEST

REFERENCED 1 TIME

ELEMENT IS FORMATTED-MM-WS

MODIFIED 1 TIME

ELEMENT IS FORMATTED-DD-WS

MODIFIED 1 TIME

ELEMENT IS FORMATTED-YY-WS

MODIFIED 1 TIME

RECORD USED IS TITLE-1-WS VERSION HIGHEST

REFERENCED 1 TIME

RECORD USED IS TITLE-2-WS VERSION HIGHEST

REFERENCED 1 TIME.

ADD PROGRAM PRANDEM2 VERSION NEXT HIGHEST

LANGUAGE IS COBOL

ESTIMATED LINES ARE 131

INPUT FILE IS CUSTOMER-FILE VERSION HIGHEST

OUTPUT FILE IS RPTFILE VERSION HIGHEST

RECORD USED IS CUSTOMER VERSION HIGHEST

ELEMENT IS CUST-NUM

REFERENCED 1 TIME

ELEMENT IS CUST-NAME

REFERENCED 1 TIME

ELEMENT IS CUST-ADDRESS

ELEMENT IS CUST-ADDR1

REFERENCED 1 TIME

ELEMENT IS CUST-ADDR2

REFERENCED 1 TIME

ELEMENT IS CUST-CITY

ELEMENT IS CUST-ZIP-CODE

REFERENCED 1 TIME

ELEMENT IS CUST-CREDIT

RECORD USED IS TITLE-REC VERSION HIGHEST

MODIFIED 4 TIMES

RECORD USED IS DETAIL-REC VERSION HIGHEST

MODIFIED 3 TIMES

ELEMENT IS RPT-CUST-NO

MODIFIED 1 TIME

ELEMENT IS RPT-CUST-NAME

MODIFIED 1 TIME

ELEMENT IS RPT-ADDR1

MODIFIED 1 TIME

ELEMENT IS RPT-ADDR2

MODIFIED 1 TIME

ELEMENT IS RPT-ZIP

MODIFIED 1 TIME

RECORD USED IS PAGE-COUNT-WS VERSION HIGHEST

REFERENCED 1 TIME

MODIFIED 2 TIMES

RECORD USED IS POSITION-IND-WS VERSION HIGHEST

REFERENCED 1 TIME

MODIFIED 1 TIME

A-16 CA-IDMS Dictionary Loader

A.1 About this Appendix

RECORD USED IS PAGE-INCREMENT-WS VERSION HIGHEST

REFERENCED 1 TIME

MODIFIED 1 TIME

RECORD USED IS TITLE-1-WS VERSION HIGHEST

REFERENCED 1 TIME

RECORD USED IS TITLE-2-WS VERSION HIGHEST

REFERENCED 1 TIME.

ADD FILE CUSTFILE VERSION NEXT HIGHEST

LABELS ARE OMITTED

RECORD SIZE IS 194

RECORDING MODE IS F

FILE NAME SYNONYM IS CUSTOMER-FILE VERSION NEXT HIGHEST.

ADD RECORD CUST VERSION NEXT HIGHEST

LANGUAGE IS COBOL

WITHIN FILE CUSTFILE VERSION HIGHEST

RECORD NAME SYNONYM IS CUSTOMER VERSION NEXT HIGHEST.

 93 FILLER PIC X(19).

 93 CUST-NAME PIC X(29).

 93 CUST-ADDRESS.

95 CUST-ADDR1 PIC X(29).

95 CUST-ADDR2 PIC X(29).

 93 FILLER PIC X(34).

ADD FILE MAILFILE VERSION NEXT HIGHEST

LABELS ARE OMITTED

RECORD SIZE IS 21

RECORDING MODE IS F.

ADD RECORD MAIL-REC-1 VERSION NEXT HIGHEST

LANGUAGE IS COBOL

WITHIN FILE MAILFILE VERSION HIGHEST.

 93 FILLER PIC X.

 93 MAIL-LINE-1 PIC X(29).

ADD RECORD MAIL-REC-2 VERSION NEXT HIGHEST

LANGUAGE IS COBOL

WITHIN FILE MAILFILE VERSION HIGHEST.

 93 FILLER PIC X.

 93 MAIL-LINE-2 PIC X(29).

ADD RECORD MAIL-REC-3 VERSION NEXT HIGHEST

LANGUAGE IS COBOL

WITHIN FILE MAILFILE VERSION HIGHEST.

 93 FILLER PIC X.

 93 MAIL-LINE-3 PIC X(29).

ADD PROGRAM PRANDEM3 VERSION NEXT HIGHEST

LANGUAGE IS COBOL

ESTIMATED LINES ARE 81

INPUT FILE IS CUSTFILE VERSION HIGHEST

OUTPUT FILE IS MAILFILE VERSION HIGHEST

RECORD USED IS CUST VERSION HIGHEST

ELEMENT IS CUST-NAME

REFERENCED 1 TIME

ELEMENT IS CUST-ADDRESS

ELEMENT IS CUST-ADDR1

Appendix A. Sample COBOL Input and DDDL Output A-17

A.1 About this Appendix

REFERENCED 1 TIME

ELEMENT IS CUST-ADDR2

REFERENCED 1 TIME

RECORD USED IS MAIL-REC-1 VERSION HIGHEST

MODIFIED 2 TIMES

ELEMENT IS MAIL-LINE-1

MODIFIED 1 TIME

RECORD USED IS MAIL-REC-2 VERSION HIGHEST

REFERENCED 1 TIME

MODIFIED 1 TIME

ELEMENT IS MAIL-LINE-2

MODIFIED 1 TIME

RECORD USED IS MAIL-REC-3 VERSION HIGHEST

REFERENCED 1 TIME

MODIFIED 1 TIME

ELEMENT IS MAIL-LINE-3

MODIFIED 1 TIME.

A-18 CA-IDMS Dictionary Loader

Appendix B. Runtime Error Messages

B.1 About Runtime Error Messages . B-3
B.2 Runtime Messages Issued by the Program Processor B-4
B.3 Runtime Message Issued by the Cross Reference Processor B-6
B.4 Runtime Messages Issued by the DDDL Generator B-8

Appendix B. Runtime Error Messages B-1

B-2 CA-IDMS Dictionary Loader

B.1 About Runtime Error Messages

B.1 About Runtime Error Messages

Where messages appear: This appendix documents the runtime messages issued
by the three Dictionary Loader components. These runtime messages can indicate
fatal or nonfatal conditions and appear in the console log or the printed output for the
run:

Nonfatal messages: The nonfatal messages issued by the Dictionary Loader com-
ponents mainly identify errors in the control statement information. When one of the
components detects a nonfatal error condition, the component issues the appropriate
message and continues running.

Fatal messages: The fatal messages issued by the Dictionary Loader components
flag two types of error conditions:

■ I/O errors (most commonly INPUT/OUTPUT FILE WILL NOT OPEN)

■ Internal errors from CA-IDMS utility programs

Consequence of a fatal error: When one of the Dictionary Loader components
detects a fatal condition, the component issues a write-to-operator message (which
appears on the console log) and terminates the run.

Program Processor Mes-
sages

Both nonfatal and fatal messages appear on the console
log

Cross Reference
Processor Message

Nonfatal messages appear at the beginning of the report
output for the run; fatal messages appear on the console
log

DDDL Generator Mes-
sages

Nonfatal messages appear at the beginning of the report
output for the run; fatal messages appear on the console
log

Appendix B. Runtime Error Messages B-3

B.2 Runtime Messages Issued by the Program Processor

B.2 Runtime Messages Issued by the Program Processor

 Nonfatal

 1.

'keyword' INVALID PARAMETER

The reported keyword is an invalid specification.

 Fatal

 1.

BAD IDMSUTIO RETURN CODE - PARMINTF - return-code - CSFCDSPL

IDMSUTIO issued the reported return code; the job ended with a user abend code
of 100. This message reports a system internal error; rerun the job.

 2.

FATAL ERROR - BAD IDMSFLIO RETURN CODE - return-code - SSRFIO

IDMSFLIO issued the reported return code; the job ended with a user abend code
of 100. This message reports a system internal error; rerun the job.

 3.

FATAL ERROR - BAD IDMSUTIO RETURN CODE - return-code - SSRPIO

IDMSUTIO issued the reported return code; the job ended with a user abend code
of 100. This message reports a system internal error; rerun the job.

 4.

FATAL ERROR - CBIO - INVALID OPERATION - SSCBIO

The job ended with a user abend code of 100. This message reports a system
internal error; rerun the job.

 5.

FATAL ERROR - RPIO - INVALID OPERATION -- SSRPIO

The job ended with a user abend code of 100. This message reports a system
internal error; rerun the job.

 6.

INPUT FILE SYSIPT WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSIPT
is specified correctly.

 7.

MEMBER NOT FOUND IN LIBRARY (VSE/ESA users only)

The job ended with a user abend code of 100. This message is issued when the
=COPY IDMS option is being used to read the input program from a library into
the SYSIPT file and the library member cannot be accessed. Check that the
correct member-name is specified in the =COPY IDMS statement and that the
sublibrary name is specified if necessary (the default is the A. sublibrary).

B-4 CA-IDMS Dictionary Loader

B.2 Runtime Messages Issued by the Program Processor

 8.

OUTPUT FILE PRANREF WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if
PRANREF is specified correctly.

 9.

OUTPUT FILE SYSLST WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSLST
is specified correctly.

10.

OUTPUT FILE SYSPCH WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSPCH
is specified correctly.

Appendix B. Runtime Error Messages B-5

B.3 Runtime Message Issued by the Cross Reference Processor

B.3 Runtime Message Issued by the Cross Reference
Processor

 Nonfatal

 1.

ILLEGAL ALIAS FOR PROG-ID

The name following the equal sign (=) in the LIBRARY option in the parameter
statement is missing.

 2.

ILLEGAL DELIMITER

Statement keywords are not delimited by the required comma or blank.

 3.

ILLEGAL MEMBER NAME

Member name is missing as the operand of the LIBRARY option in the parameter
statement.

 4.

ILLEGAL PROGRAM-ID 'NEW NAME'

The name following the equal sign (=) in the PROGRAM-ID option in the param-
eter statement is missing.

 5.

OPTION/SELECT NOT RECOGNIZED

A statement keyword is not valid as expressed.

 6.

TOO MANY LIBRARY NAMES

More than 99 library members are specified.

 7.

TOO MANY PROGRAM-IDS

More than 39 source program names are changed to new names in the
PROGRAM-ID option.

 Fatal

 1.

BAD IDMSUTIO RETURN CODE - PARMINTF - return-code - CSFCDSPL

IDMSUTIO issued the reported return code; the job ended with a user abend code
of 100. This message reports a system internal error; rerun the job.

 2.

BAD RETURN CODE - module-name - return-code

B-6 CA-IDMS Dictionary Loader

B.3 Runtime Message Issued by the Cross Reference Processor

The error originated in the named module (either IDMSUTIO or IDMSDLIO).
The module issued the listed return code. The jog ended with a user abend code
of 100. This message reports a system internal error; rerun the job.

 3.

INPUT FILE PRANREF WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if
PRANREF is specified correctly.

 4.

INPUT FILE SYSIPT WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSIPT
is specified correctly.

 5.

MEMBER NOT FOUND IN LIBRARY (VSE/ESA users only)

The job ended with a user abend code of 100. Check the member name specified
in the LIBRARY option.

 6.

OUTPUT FILE SYSLST WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSLST
is specified correctly.

Other fatal messages: Note that the Cross Reference Processor may issue an addi-
tional class of fatal messages. These messages are generated by the utility module
IDMSSORT and report system internal errors.

IDMSSORT messages: IDMSSORT error messages are write-to-operator messages
that are displayed on the console log. When the Cross Reference Processor transmits
an IDMSSORT message, the run abends with a user abend code of 3134 and a two-
line message appears in the following format:

+IDMS 999999L IDMSSORT - message-text

+IDMS 298991L 9199

Examples: Four examples of message text that can appear in this message are
shown below:

INVALID KEYWORD PASSED TO IDMSSORT

UNSUPPORTED SORT CONTROL STATEMENT PASSED

NO keyword-type KEYWORD ON SORT record-name STATEMENT

NO keyword-length KEYWORD ON SORT record-name STATEMENT

Although the user cannot take corrective action to resolve IDMSSORT error conditions
(because such errors are system internal), the user can retry the run. In some cases,
the internal error will disappear. If the error condition persists, consult with the person
responsible for tracking system errors.

Appendix B. Runtime Error Messages B-7

B.4 Runtime Messages Issued by the DDDL Generator

B.4 Runtime Messages Issued by the DDDL Generator

 Nonfatal messages

 1.

ILLEGAL ALIAS FOR PROG-ID

The name following the equal sign (=) in the LIBRARY option in the parameter
statement is missing.

 2.

ILLEGAL DELIMITER

Statement keywords are not delimited by the required comma or blank.

 3.

ILLEGAL MEMBER NAME

The member name is missing as the operand of the LIBRARY option.

 4.

LINE EXCEEDS 72 CHARACTERS

The length of a generated DDDL statement exceeds 72 characters. The statement
must be edited by the user before being input to the DDDL compiler.

 5.

MORE THAN 5 PROGRAMS IN GROUPING STATEMENT

A grouping statement specified more than five program names. The DDDL Gen-
erator accepted the first five, ignored the additional program names, and continued
processing.

 6.

MORE THAN 199 DIFFERENT PROGRAMS CALLED - TABLE EXCEEDED

A program being processed by the DDDL Generator called more than 100 other
different programs. The DDDL Generator generated ADD PROGRAM statements
for the first 100 programs called, ignored additional program calls, and continued
processing.

 7.

OPTION/SELECT NOT RECOGNIZED

A statement keyword is not valid as expressed.

 8.

TOO MANY LIBRARY NAMES

More than 99 library members are specified.

 Fatal

 1.

BAD RETURN CODE - module-name - return-code

B-8 CA-IDMS Dictionary Loader

B.4 Runtime Messages Issued by the DDDL Generator

The error originated in the named module (either IDMSUTIO or IDMSFLIO).
The module issued the listed return code. The job ended with a user abend code
of 100. This message reports a system internal error; rerun the job.

 2.

INPUT FILE PRANREF WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if
PRANREF is specified correctly.

 3.

INPUT FILE SYSIPT WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSIPT
is specified correctly.

 4.

MEMBER NOT FOUND IN LIBRARY (VSE/ESA users only)

The job ended with a user abend code of 100. Check the member name specified
in the LIBRARY option.

 5.

OUTPUT FILE SYSLST WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSLST
is specified correctly.

 6.

OUTPUT FILE SYSPCH WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSPCH
is specified correctly.

Additional fatal messages: Note that the DDDL Generator may issue an addi-
tional class of fatal messages. These messages are generated by the utility module
IDMSSORT and report system internal errors.

IDMSSORT messages: IDMSSORT error messages are write-to-operator messages
that are displayed on the console and in the JES message listing. When the DDDL
Generator transmits an IDMSSORT message, the run abends with a user abend code of
3134 and a two-line message appears in the following format:

+IDMS 999999L IDMSSORT - message-text

+IDMS 298991L 9199

Four examples of message text that can appear in the message are:

INVALID KEYWORD PASSED TO IDMSSORT

UNSUPPORTED SORT CONTROL STATEMENT PASSED

NO keyword-type KEYWORD ON SORT record-name STATEMENT

NO keyword-length KEYWORD ON SORT record-name STATEMENT

Although the user cannot take corrective action to resolve IDMSSORT error conditions
(because such errors are system internal), the user can retry the run. In some cases,

Appendix B. Runtime Error Messages B-9

B.4 Runtime Messages Issued by the DDDL Generator

the internal error will disappear. If the error condition persists, consult with the person
responsible for tracking system errors.

B-10 CA-IDMS Dictionary Loader

 Index

Special Characters
$$$ diagnostic message 2-7

A
ANS,ANS68,ANS74 diagnostic message 2-8

C
COBOL input, samples A-3—A-11
control file

See also worksheet
cross reference processor, creating 3-7—3-9
cross reference processor, sample 3-18
DDDL generator, creating 4-7—4-8
worksheet, creating 3-8

cross reference processor
control file parameters, table of 3-7
control statement file 3-7
default processing options, table of 3-7
Dictionary of Data Names report 3-6, 3-23
executing 3-24—3-26
fatal runtime messages B-6—B-7
file control statements 3-9
general discussion 3-3—3-6
IDMSSORT runtime messages B-7
nonfatal runtime messages B-6
OS/390 JCL 3-24
output 3-5, 3-6
override processing options, table of 3-7
parameter statement 3-13—3-16
PRANXREF program 3-24
selection statement 3-18
System Data Cross-Reference report 3-5, 3-20
title statement 3-17
VSE/ESA JCL 3-25
worksheet, filling in 3-10—3-12

D
DATA DIVISION Cross-Reference report

and cross reference processor 3-10
field descriptions 2-13
sample 2-13

DDDL compiler 4-5
DDDL generator

clauses, table 4-6
control statement file 4-7

DDDL generator (continued)
editing generated statements 4-17—4-19
executing the compiler 4-20—4-22
fatal runtime messages B-8
general discussion 4-3—4-6
grouping statement 4-12—4-16
grouping statement examples 4-15—4-16
identifying nonunique names 4-14
identifying synonyms 4-14
IDMSSORT messages B-9
input 2-3, 4-5
nonfatal runtime messages B-8
operating with control statements 4-4
operating without control statements 4-4
OS/390 JCL 4-20
output 4-5
parameter statement 4-9—4-10
PRANIDDG program 4-20
sample control statements A-11
sample generated DDDL statements A-11—A-18
VERSION clause 4-11
VERSION statement 4-11
VERSION statement syntax 4-11
VSE/ESA JCL 4-21

DDDL output, samples A-3
diagnostic messages

$$$ 2-7
ANS,ANS68,ANS74 2-8
FLO 2-8—2-10

Diagnostic report 2-9
messages 2-7—2-10
sample 2-7
types of problems flagged 2-9

Dictionary of Data Names report, sample 3-23

F
Fatal errors, consequences B-3
File and Record Layouts report

and cross reference processor 3-10
field descriptions 2-10, 2-11—2-12
sample 2-10

FLO diagnostic message 2-8

G
 generator.grouping statement

See DDDL

Index X-1

 generator.VERSION clause
See DDDL

 generator.VERSION statement
See DDDL

grouping statement
coding rules 4-12
examples of usage 4-15—4-16
parameter list 4-12—4-13
sample 4-13
syntax 4-12

I
IDMSDLIO B-7
IDMSFLIO B-4
IDMSSORT runtime messages B-7, B-9
IDMSUTIO B-4, B-6
input program, program processor 2-4

J
JCL

for VSE/ESA source statement library 2-20
OS/390, cross reference processor 3-24—3-25
OS/390, DDDL compiler 4-20
OS/390, program processor 2-18—2-19
VSE/ESA, cross reference processor 3-25
VSE/ESA, DDDL compiler 4-21
VSE/ESA, program processor 2-19

M
Management Summary report, sample 2-6

O
OS/390

cross reference processor JCL 3-24
DDDL generator JCL 4-20
program processor JCL 2-18
program processor overrides 2-15

P
parameter statement

cross reference processor 3-13
DDDL generator 4-9—4-10
program processor 2-15, 2-17

PRANCOB program
for OS/390 2-18
for VSE/ESA 2-19

PRANIDDG program
for OS/390 4-20
for VSE/ESA 4-21

PRANXREF program
for OS/390 3-24
for VSE/ESA 3-25

PROCEDURE DIVISION, tracking use of 2-13
program processor

DATA DIVISION Cross-Reference report 2-13
data usage file 2-3
default runtime options, table of 2-4
diagnostic messages 2-7—2-10
Diagnostic report 2-7
executing 2-18—2-20
fatal runtime messages B-4—B-5
File and Record Layouts report 2-10—2-12
general description of 2-3
input 2-4—2-5
Management Summary report 2-6
nonfatal runtime messages B-4
OS/390 JCL 2-18
output 2-3, 2-6—2-14
override processing options 2-15
override runtime options, table of 2-4
parameter statement 2-15—2-17
PRANCOB program 2-18
reports
VSE/ESA considerations 2-4
VSE/ESA JCL 2-19
VSE/ESA source statement library 2-20

R
reports

DATA DIVISION Cross-Reference report 2-13
Diagnostic report 2-7
Dictionary of Data Names report 3-6, 3-23
Management Summary report 2-6
System Data Cross-Reference report 3-5, 3-20

S
selection statement

coding rules 3-18
parameter list 3-18
syntax 3-18

 statement.DDDL generator
See grouping

SYSIPT B-4, B-7
SYSLST B-5, B-7

X-2 CA-IDMS Dictionary Loader

SYSPCH B-5
System Data Cross-Reference report

field descriptions 3-20—3-22
sample 3-5, 3-20

T
title statement, cross reference processor

syntax 3-17

V
VERSION clause 4-11
VERSION statement 4-11

parameter list 4-11
syntax 4-11

VSE/ESA
=COPY facility 2-4
and program processor 2-4
cross reference processor JCL 3-25
DDDL generator JCL 4-21
program processor JCL 2-19
program processor overrides 2-15
source statement library JCL 2-20

W
worksheet, control file

and using program processor reports 3-10
filling in 3-10—3-12
lines on 3-10
sample 3-9
specifying selection criteria 3-10—3-11
variables in selection statement, table 3-12

Index X-3

	CA-IDMS Dictionary Loader User Guide
	Contents
	How to Use This Manual
	What this Manual Contains
	How this Manual is Organized
	Related Manuals

	Chapter 1. Introduction
	1.1 About the Dictionary Loader
	1.2 System Overview
	1.3 Dictionary Loader Capabilities
	1.4 Dictionary Loader Reports

	Chapter 2. Program Processor
	2.1 About the Program Processor
	2.2 Input Requirements
	2.3 Output
	2.3.1 Management Summary Report
	2.3.2 Diagnostic Report
	2.3.3 File and Record Layouts Report
	2.3.4 DATA DIVISION Cross- Reference Report

	2.4 Parameter Statement
	2.5 Executing the Program Processor

	Chapter 3. Cross Reference Processor
	3.1 About the Cross Reference Processor
	3.2 Overview
	3.3 Developing a File of Control Statements
	3.4 Filling in Worksheets
	3.5 Parameter Statement
	3.6 Title Statement
	3.7 Selection Statement
	3.8 Sample Control File
	3.9 System Data Cross- Reference Report
	3.10 Dictionary of Data Names Report
	3.11 Executing the Cross Reference Processor

	Chapter 4. DDDL Generator
	4.1 About the DDDL Generator
	4.2 Overview
	4.3 Developing a File of Control Statements
	4.4 Parameter Statement
	4.5 VERSION Statement
	4.6 Grouping Statement
	4.7 Using the Grouping Statement
	4.8 Editing Generated DDDL Statements
	4.9 Executing the DDDL Compiler

	Appendix A. Sample COBOL Input and DDDL Output
	A. 1 About this Appendix

	Appendix B. Runtime Error Messages
	B. 1 About Runtime Error Messages
	B. 2 Runtime Messages Issued by the Program Processor
	B. 3 Runtime Message Issued by the Cross Reference Processor
	B. 4 Runtime Messages Issued by the DDDL Generator

	Index
	Special Characters
	A
	C
	D
	F
	G
	I
	J
	M
	O
	P
	R
	S
	T
	V
	W

